
planning
文章平均质量分 75
致守
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
多智能体路径规划综述(万字长文解读)--2022
多智能体路径规划(multi-agent path finding,MAPF)是为多个智能体规划路径的问题,关键约束是多个智能体同时沿着规划路径行进而不会发生冲突按照规划方式不同:MAPF算法分为集中式规划算法和分布式规划算法,集中式规划算法是最经典和最常用的MAPF算法,主要分为基于A*搜索、基于冲突搜索、基于代价增长树和基于规约四种算法;分布式执行算法分为专家演讲型,改进通信型和任务分解型三种算法虽然经典的集中式规划算法是目前最常用的也是效率最高的算法。转载 2024-11-05 14:26:08 · 1128 阅读 · 0 评论 -
多机器人路径规划(MAPF)综述
原文总结MAPF(Multi-Agent Path Finding) 问题要干什么,其实从名字来说已经说的很清楚了: 就是多机器人路径规划,再关键一点,就是无碰撞(no collision)的路径规划理解一个算法首先先把算法玩起来,玩起来的前提是知道算法的输入输出,这就够了.从输入输出就能从总体上了解这个算法能干什么,之后再深入算法细节,就不至于在冗杂的参数和复杂的算法细节中迷失,从而事半功倍.注:MAPF 算法,有时也叫求解器(solver),从编程视角来说,叫求解器可能更贴切一些.。转载 2024-11-05 14:25:10 · 569 阅读 · 0 评论 -
自动驾驶路径规划——A*(Astar)算法
最佳优先搜索(BFS),又称A算法,是一种启发式搜索算法(Heuristic Algorithm)。[不是广度优先搜索算法( Breadth First Search , BFS )] BFS算法在广度优先搜索的基础上,用启发估价函数对将要被遍历到的点进行估价,然后选择代价小的进行遍历,直到找到目标节点或者遍历完所有点,算法结束。 要实现最佳优先搜索我们必须使用一个优先队列(priority queue)来实现,通常采用一个open优先队列和一个closed集,open优先队列用来储存转载 2024-11-05 14:23:44 · 993 阅读 · 0 评论 -
A*算法(A-star Algorithm)搜索最短路径(含C/C++语言实现代码)
在我们的日常生活中由许多方面都会涉及到“最短路径”的搜索问题,比如ROS机器人中根据给定地图进行全局路径规划,或者游戏中NPC的移动计算,线上游戏的的BOT计算等。A*算法作为一种较为高效的算法经常被应用在以上环境中。实际代价G:表示从起点出发移动到地图上当前单元格的移动耗费。例如,我们可以采用从起点开始,经过多少次上下左右移动才移动到指定点作为实际代价G。预估代价H:表示从当前单元格移动到终点的预估耗费。转载 2024-11-05 14:20:07 · 266 阅读 · 0 评论 -
A*(A-star)算法 定义+特性+原理+公式+Python示例代码(带详细注释
A*(A-star)算法是一种在图中寻找从初始节点到目标节点最短路径的启发式搜索算法。它结合了Dijkstra算法的确保性(保证找到一条最短路径)和贪心算法的高效性(快速找到目标)。转载 2024-11-05 14:18:10 · 786 阅读 · 1 评论 -
A-Star(A*)寻路算法原理与实现
远古时期,自动寻路的功能就是我们国产MMORPG游戏的特色之一,并且被很多“清高”的玩家所诟病。如果做得不好,就可能出现下图这样的尴尬局面(站在玩家的角度这个寻路肯定是无法接受的。站在程序员的角度,能寻到就不错了,你行你上啊!):实际上除了玩家自己控制的角色以外,很多NPC或者机器人(AI)同样需要自动寻路的功能来达到与玩家交互的功能。例如吃鸡游戏中,机器人在城镇中跑毒就需要自动寻路,不然可能就被墙卡死了。那么我们要怎么来计算当前位置到目标位置的最短路径呢?如今已经有各种各样的寻路算法可以帮助到我们。转载 2024-11-02 12:46:00 · 283 阅读 · 0 评论 -
最快速的寻路算法 Jump Point Search
作者: runzhiwang,腾讯 TEG 后台开发工程师本文介绍一种跳点搜索算法 JPS 以及其四个优化算法,其寻路速度最快可是 A*算法的 273 倍,其中 JPS 的预处理在有的文章中被称为 JPS+。文中的 JPS-Bit 和 JPS-BitPrune 都支持动态阻挡。1.引言寻路算法用途众多,例如在游戏和地图中。A*算法已经众所周知,对于其优化也是层出不穷,然而性能并没有取得突破性进展。本文介绍 JPS 的效率、多线程、内存、路径优化算法。为了测试搜索算法的优化性能,实验中设置游戏场景转载 2024-11-02 10:06:25 · 260 阅读 · 0 评论 -
【路径规划】Dijkstra算法——超详细原理图解
集合中起点A可达的节点B、C、D到起点A的距离,并更新这些节点的父节点为A,并将剩余节点E的父节点置为空或自身皆可,将其距离值置为正无穷大或一个足够大的数。集合中的节点B,更新B的最短路径长度和父节点,当前B的最短路径距离为9,父节点为A,而若从C出发到达B,则最短路径长度将减小为7,集合中的节点E,当前E节点的最短路径长度为10,其父节点为D,而A经过B到达E的话,其路径长度为12,大于E原有的最短路径长度,,所以对E的更新失败,E仍然保留原有的最短路径长度和父节点。转载 2024-09-13 22:19:36 · 3527 阅读 · 1 评论 -
A*算法....
为了弥补之前简陋的JAVA大作业,所以我决定学习一下A* 算法,据说A* 算法的效率 >Dijkstra算法和 优先搜索(BFS)算法,此BFS非彼BFS希望看到这篇文章的人,能分清楚,当然A*算法的高效之处也是继承了此BFS的高效,但为什么不用此BFS呢,请看正题。转载 2024-10-30 19:52:20 · 60 阅读 · 0 评论 -
移动机器人运动规划 | 基于图搜索的Dijkstra 和 A*算法详解
Dijkstra在扩展的时候,同时考虑从n节点扩展所有可扩展节点的代价g(),如果某个节点m的代价g(m)比g(n)要小,则更新当前代价为g(m)Dijkstra的最优性保证:图运行的过程中,任何一个被扩展或者访问的节点,保证存储的代价g()值是从起点节点开始到当前节点的最小值。但是经过A节点的代价是4,所以经过A节点的路径是最优的。优先级队列:维护的是 代价函数+启发函数的 节点从小到大排序 f(n)=g(n)+h(n)可扩展的节点仅有a节点,计算f(a)=g(a)+h(a)=1+5=6。转载 2024-07-08 17:35:51 · 133 阅读 · 0 评论 -
【规划】关于A*、LPA*、D* Lite算法的小结
原文来自于知乎搬砖的旺财A*、LPA*以及D* lite都可以用于静态环境下移动机器人的路径规划,此时三者计算效率都相差不大,都利用了启发式搜索来提高效率,LPA*和D* Lite的增量式搜索在这时没有任何帮助,但对于动态环境的路径规划,A*算法却有心无力,但是对于动态环境下进行二次搜索,LPA*和D* Lite效率明显高于A*。 LPA*以及D* lite原理大体类似,都是基于这样一个思想:发生变化后的环境与最初的地图信息相差不大,可以利用增量式搜索利用先前存储信息来提高二次、三次及以后的搜索效率.转载 2021-06-23 09:31:24 · 1927 阅读 · 0 评论 -
手把手教用matlab做无人驾驶(三)-路径规划A*算法
这里,我们更新主程序如下:% editor: Robert.Cao% 2018.9.1clcclear allclose alldisp('A Star Path Planing start!!')p.start=[1,1]; %起始点p.goal=[10,3]; %目标点p.XYMAX=11; obstacle=GetBoundary(p);%得到边界数据nObstacle=20;obstacle=GetObstacle(nObstacle,obstacle,p)转载 2021-07-23 11:21:32 · 2142 阅读 · 1 评论 -
Matlab航迹规划仿真——A*算法
文章目录1. 初始化参数 2. 构建地图 3. A*算法搜索路径 4. 路径优化 5. 效果图 6. 下载链接基本的A*算法在这里不再讲述,想要了解的朋友可以自己在CSDN搜索,在此主要解释下代码。1. 初始化参数主要参数:地图大小 起始点和目标点坐标clc clear all m = 30;n = 30; Spoint = [3 3]; %起始点坐标 Epoint = [29 22]; %目标点坐标 2. 构建地图-inf表示不可到达...转载 2020-06-10 13:56:51 · 2737 阅读 · 2 评论 -
导航路径规划之五 A*算法
A*算法是启发式搜索,是一种尽可能基于现有信息的搜索策略,也就是说搜索过程中尽量利用目前已知的诸如迭代步数,以及从初始状态和当前状态到目标状态估计所需的费用等信息。A*算法可以选择下一个被检查的节点时引入了已知的全局信息,对当前结点距离终点的距离作出估计,作为评价该节点处于最优路线上的可能性的量度,这样可以首先搜索可能性大的节点,从而提高了搜索过程的效率。A*算法的基本思想如下:引入当前节点j的估计函数f*,当前节点j的估计函数定义为:...转载 2020-05-15 15:28:45 · 2402 阅读 · 0 评论 -
A星算法详解(个人认为最详细,最通俗易懂的一个版本)
A* 寻路算法原文地址:http://www.gamedev.net/reference/articles/article2003.asp概述虽然掌握了A*算法的人认为它容易,但是对于初学者来说,A*算法还是很复杂的。搜索区域(The Search Area)我们假设某人要从A点移动到B点,但是这两点之间被一堵墙隔开。如图1,绿色是A,红色是B,中间蓝色是墙。图1你应该注意到了,我们把要搜寻的区域划分成了正方形的格子。这是寻路的第一步,简化搜索...转载 2020-06-10 13:26:14 · 2002 阅读 · 0 评论 -
Dijkstra算法及A*(Astar)实现最短路径
最短路径问题下面这份代码完全是基于邻接矩阵实现Dijkstra算法,算法竞赛的实现方法,原作者是Acwing大佬y神//稠密图:邻接矩阵#include <iostream>#include <algorithm>#include <cstring>#include <iomanip>#include <cstdlib>using namespace std;const int N = 510;int g[N][N];转载 2021-07-23 13:28:30 · 963 阅读 · 1 评论 -
A*,那个传说中的算法
周日的下午,微信simplemain,老王又来找大伙儿聊技术了~~今天想跟大家聊的,是我们经常用到,但是却让大家觉得十分神秘的那个算法:A* 。想必大家都玩儿过对战类的游戏,老王读书那会儿,中午吃完饭就会跟几个好哥们儿一起来两局红警。后来升级了,玩儿星际(是不是暴露年龄了,哈哈~~)。玩儿的时候,就会发现这里面的兵(为了方便描述,把坦克、飞艇、矿车、龙骑等统称为兵),你只要指定好地点,他们就会自己朝目的地进发,最终去向你指定的地点。不过红警的实现似乎要差一点,经常走绕路..转载 2021-07-23 11:26:34 · 330 阅读 · 1 评论 -
A*算法(超级详细讲解,附有举例的详细手写步骤)
背景:项目需要接触此算法,以下是一些自学成果,如有不足之处,欢迎指出,必虚心接受。做了一份PPT来汇报,此处直接使用自己PPT的截图。部分图片来源网络,如有侵权立马删除,以下博文仅作为学习笔记。后期又新增了完整PPT。https://blog.csdn.net/dujuancao11/article/details/114842884目录A*寻路算法A*算法解决什么问题A*算法的基本原理A*算法的详细原理A*算法的详细原理之定义A*算法的详...转载 2021-07-23 13:26:01 · 11358 阅读 · 1 评论 -
混合A*算法研究
目的 看了一些介绍“混合A星”的博客,写的都太业余了。本文从专业的角度探讨一下无人车运动规划中著名的混合A星(Hybrid A Star)方法,首先我们最关心的两个问题是: ● 混合A星适用于什么场景? 存在障碍物的环境,低速、有运动约束的机器人或无人车。在无人驾驶上具体可以用于停车场的自动泊车的路径规划。 这里的关键词是“约束”,如果你看到有人把混合A星用在差速机器人或者全向机器人上,那你就可以得出判断:使用者不懂混合A星。因为,如果机器人没有运动约束,那么完全没有必要用混合A星。转载 2021-08-27 10:21:03 · 7390 阅读 · 1 评论 -
A*算法.....
from:https://www.cnblogs.com/21207-iHome/p/6048969.htmlDijkstra算法 迪杰斯特拉(Dijkstra)算法是典型的最短路径的算法,由荷兰计算机科学家迪杰斯特拉于1959年提出,用来求得从起始点到其他所有点最短路径。该算法采用了贪心的思想,每次都查找与该点距离最近的点,也因为这样,它不能用来解决存在负权边的图。解决的问题可描述为:...转载 2020-03-25 14:08:32 · 11195 阅读 · 0 评论 -
最短路径问题---Dijkstra算法详解
推荐内容算法特点:迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。算法的思路Dijkstra算法采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。转载 2022-12-28 15:48:23 · 812 阅读 · 0 评论 -
自动驾驶算法详解(5): 贝塞尔曲线进行路径规划的python实现
路径规划的目标是实现从目的地到终点之间寻找一条安全(无碰撞)、高效(最短距离或 最短时间)的一条最优或接近最优的路径。自动驾驶中路径规划不仅要考虑一条安全(无碰撞)、高效(最短距离或 最短时间),还应该考虑自车动力学的约束,以及曲线的平滑。算法中,路径规划一般特指局部路径规划,即规划一条路径,引导自车从当前位置驶向导航routing模块期望的位置。在实际应用中,根据障碍物、期望位置、曲率限制等条件确定控制点,从而求解贝塞尔曲线获得规划的路径。贝塞尔曲线是一种常用的求解自动驾驶规划路径的方法。...转载 2022-08-12 10:25:39 · 1139 阅读 · 0 评论 -
D* Lite路径规划算法
D* Lite路径规划算法1.D* Lite算法简述 2.D* Lite算法伪代码 3.D*Lite算法一个简单的例子 3.1 地图无变化时 3.2地图变化时 4.算法总结 参考资料 搜索算法其他文章上一篇介绍了D*路径搜索算法原理解析及Python实现,这一篇紧接着介绍D*算法的改进版。1.D* Lite算法简述D_star Lite算法是Koenig S和Likhachev M基于LPA_star 算法基础上提出的路径规划算法。D_star Lite 算法之...转载 2022-03-07 15:51:47 · 4949 阅读 · 0 评论 -
D*算法的思考与理解
D*算法:特点:后向搜索,或者说是反向计算。按照论文中的结果,比replan的效率高不少,在动态环境中表现优秀。这是因为它提前把地图信息都计算并存储的缘故。里面的节点被称为state,每个state有如下的值:tag:new,open,closed 分别标识三类节点,分别标识没有加入过open表的、在open表的、曾经在open表但现在已经被移走的。一开始所有的点的tag初值为new,当被加入到open表之后,被置为‘open’ , 从open表移走,被置为‘closed’h: 每个点的h值.转载 2022-03-07 15:50:16 · 3020 阅读 · 0 评论 -
D算法图解
(86条消息) D算法图解_Multi-Domain-CSDN博客转载 2022-03-07 15:48:41 · 290 阅读 · 0 评论 -
D*算法(Dynamic A Star)
D*算法(Dynamic A Star)符号及函数说明Openlist是一个可以用来做广度优先搜索的队列节点state的标识tag分为三类:没有加入过open表的(new)、在open表的(open)、曾经在open表但现在已经被移走的(closed)。每个节点到终点G的代价为h,两个节点(state)之间的开销为C(X,Y),X到终点的代价h为上一个节点(父节点)Y到终点的代价+X和Y之间的开销每个节点的最小h值为k,代表了该点在全图环境中到G点的最小代价,在计算和更新过程中,对于标识转载 2022-03-07 15:46:54 · 1776 阅读 · 0 评论 -
Matlab航迹规划仿真——A*算法
文章目录1. 初始化参数2. 构建地图3. A*算法搜索路径4. 路径优化5. 效果图6. 下载链接基本的A*算法在这里不再讲述,想要了解的朋友可以自己在CSDN搜索,在此主要解释下代码。1. 初始化参数主要参数:地图大小起始点和目标点坐标clcclear allm = 30;n = 30;Spoint = [3 3]; %起始点坐标Epoint = [29 22]; %目标点坐标123452. 构建地图-inf表示不可到达的障碍物点%%...转载 2021-12-15 14:45:49 · 2631 阅读 · 0 评论 -
路径规划——动态规划在Apollo的Planner中的应用及C++代码实现
什么是动态规划(Dynamic Programming, DP)贝尔曼最优原理 多阶段决策过程的特点是每个阶段都要进行决策,具有n个阶段的决策过程的策略是由n个相继进行的阶段决策构成的决策序列。由于前阶段的终止状态又是后一阶段的初始状态,因此确定阶段最优决策不能只从本阶段的效应出发,必须通盘考虑,整体规划。就是说,阶段k的最优决策不应只是本阶段的最优,而必须是本阶段及其所有后续阶段的总体最优,即关于整个后部子过程的最优决策。 对此,贝尔曼在深入研究的基础上,针对具有无后效性的多阶段决策过程的特点,提转载 2021-11-04 13:25:45 · 1421 阅读 · 2 评论 -
速度规划(梯形、余弦、多项式、7段S型、7段修正S型、15段S型、31段S型)
文章目录一、7种速度规划对比 1、梯形速度规划 1.1 只有一段 1.1.1 加速段 1.1.2匀速段 1.1.3减速段 1.2 只有两段 1.2.1 加速段+匀速段 1.2.2匀速段 +减速段 1.2.3加速段+减速段 1.3 有三段(加速段+匀速段 +减速段) 2、余弦速度规划 2.1 只有一段 2.1.1 加速段 2.1.2 匀速段 2.1.3转载 2021-11-04 13:24:19 · 11775 阅读 · 10 评论 -
Frenet坐标系相关知识系统学习
一、Frenet坐标系简介二、Frenet坐标系与全局坐标系的转换可以基于Frenet坐标系,报据自动驾驶车辆的始末状态,利用五次多项式建立自动驾驶车辆轨迹规划模型,并建立各个场景下的轨迹质量评估函数。三、深入学习《硕士论文-基于Frenet坐标系采样的自动驾驶轨迹规划算法研究》《Optimal Trajectory Generation for Dynamic Street Scenarios in a Frene´t Frame》《无人驾驶汽车系统入门(二十一)—..转载 2021-11-04 11:38:01 · 4072 阅读 · 0 评论