群论学习笔记

什么是对称?

当你对一个对象,它可以是平面的或者立体的,进行某些特定操作,包括旋转,翻转,平移等等,它看起来还能和操作前一样,就说对象有对称性。注意,仅仅是看起来。

对称是一个保持对象结构不变的变换,对称是一个过程,而不是一个具体的事物,伽罗瓦的对称是对方程根的置换,而一个置换就是对一系列事物的重排方式,严格的说,它也并不是这个重排本身,而是你实施重排时遵循的规则,不是菜,而是菜谱。

在对称的定义中,有三个关键词"变换" transformation, “结构”structure, 以及"保持“preserve.以等边三角形为例来解释,根据定义,等边三角形的三条边长度相等,三个角大小相等,都是60度,这样的特征让人很难把它的三条边区别开来,“最长的边"这种说法毫无意义,三个角也无法区分,这种无法区分各边或各角的情况正是由等边三角形所具有的对称造成的,事实上,正式这种“无法区分”定义了对称。

变换:我们可以对一个三角形进行一些操作,原则上来说,我们可以做的有很多:把它弯曲,旋转(或翻转)一定的角度,折皱,像皮筋一样拉伸,涂上颜色,但我们的选择范围被第二个词限制住了。

结构:我们这个三角形的结构是由被认为非常重要的数学特征组成的,三角形的结构包括诸如“它有三条边”,“三条边是直的”,“每条边的长度是10厘米”“它位于当前这个平面内”,等内容,在其他数学分支中,重要的特征可能会有所不同,比如在拓扑学中,唯一重要的就是三角形构成了一个简单封闭曲线,至于它有三个转角,它的边是直的这些特征就不再重要了。

保持:变换后对象的结构必须与原来的一致,变换后的三角形必须同样有三条边,所以弄皱是不行的,边必须是直的,所以弯曲也不可以,每条边的长度必须还是10厘米,所以拉伸也是禁止的,位置要保持在原地,所以挪动位置也是不允许的。

颜色不是我们要考虑的结构,所以像魔方那样不同的颜色状态,我们认为是保持对称的变换。包括教材中用于演示操作的标记,数字等等,这些标记仅仅作为标记使用,并不属于需要保持的结构,如果不看这些标记,旋转(翻转)后的三角形看起来就和原来完全一样,所以,以魔方为例,如果一个变换产生了一种从来未出现过的颜色组合而保持立方体的形态未变,那么这个变换就是群中的元素。

所有的立方体都具有对称性,因为其所有的面都一样,所有的角都一样,所有的边都一样,但是,由于魔方可以转动,又增加了许多错综复杂的对称,可行的转动方式和组成整个魔方的小立方体的组合方式,也与对称性有很大关系。

对于一个对称图形构成的群来说,它的元素是图形所有的对称状态,比如对于正三角形,它有两种操作(沿垂直方向翻转和旋转90度,或者理解为沿着三个角的对称轴翻转的三种操作和旋转120,240度,0度)对应六种对称状态,所以群的阶就是6.对于圆这种完美的对称图形,它的对称轴有无穷多个,无论翻转和旋转任意角度都是对称的,所以群的阶为无穷大。)

对称的起点是循环,对称的终点是置换,循环是最基本的对称。

什么是方程?

只有代入某个特定的数值才能成立的等式叫做方程。

根式表达,代数数,超越数

某些实数和复数不是任何代数方程的解,这样的数叫做超越数,那些是多项式方程解的数称为代数数,派和e都是超越数。

从有理数Q开始,数系扩展到了域,在向上,求根符号的引入和解多项式方程两步操作的效果是一样的吗?或者说,解多项式方程能否仅仅通过算术运算和根式来表达?这是群论解决的大问题,群论已经给出了答案,不可能,根式表达是有局限性的,不能表示所有的代数数。

群定义

满足四条群公里的集合叫做群,设集合为G,其中任意元素a,b,c.

1.封闭性,a*b属于G。

2.结合律,(a*b)*c = a*(b*c).

3.存在单位元,G中存在一个元素e,使得a*e=e*a=a. e是唯一的。

4.存在逆元,对于每个G中a,存在一个G中的逆元x,使得a*x=x*a=e.x是唯一的。

记号*代表一种预先定义的运算,这种运算叫做“乘法”, 它是一种定义宽泛的操作,似乎所有操作都可以满足,a*b表示先做b操作再做a操作,这种从右到左的计算方式是为了和复合函数f*g(x) = f(g(x))的写法习惯保持一致。

群论彩图版的定义:

1.存在一个预先定义的,不会改变的作用列表。

2.每个作用都是可逆的。

3.每个作用都是确定性的。

4.任何连续的作用序列仍是一个作用。

后者的定义更加直观一点, 但是缺点是不够抽象,需要和抽象的定义做对应。

任何连续的作用序列仍是一个作用,可以看作是对群公里第一条封闭性的阐述,既然ab属于群元素,当然可以将ab拿出来再次计算a(ab)或者(ab)B,递归的理解封闭性,我们可以将群中的操作反复进行无数次,仍然是G中元素。这里体现了封闭性的关键作用,根据群的封闭性公理,任意两个群元素的乘积仍属于群。通过数学归纳法可推广到任意有限个元素的乘积。因此,无论作用序列多长(只要有限),其复合结果始终是群中的一个元素。群的定义仅涉及有限次运算。若考虑无限次作用序列(如无限乘积),则可能超出群的范畴(需引入拓扑群或李群等结构),但题目中隐含的应为有限次操作。群的封闭性公理确保了任何有限长度的作用序列仍属于群本身。因此,群中的连续作用序列始终对应一个有效的作用。

群的封闭性保证了操作的复合仍在群内,但群本身可以是有限或无限的。因此,并非每个群都必须包含无穷多个作用.尽管可以无限次复合操作,结果仅在有限集合内循环,不会生成新元素.

每个作用都是确定性的,可以理解为对群公理结合律的阐述,只要操作序列不变,无论组合哪个部分,都能得到唯一的明确的结果状态。

每个作用都是可逆的,对应群公里的存在逆元项,当然也隐含着存在一种不变的操作,就是单位元。

存在一个预先定义的,不会改变的作用列表,其实就是群公理的大前提,存在一个集合G。

群的公理化定义比较抽象,好像啥都没说,不结合实例很难理解,不过正式因为啥都没说,所以啥都说了,包罗了宇宙万物的基本对称性。

虽然群定义要求作用的任意合成仍是一个作用,但并没有要求合成的作用必须是一个新的作用,是否是新的作用要看最终的状态是否曾经出现在群作用的结果中,比如,翻转硬币2,4,6,8,都会回到状态,所以,虽然偶数次的翻转任意合成都是一个作用,但是并不是一个新的作用,硬币的效果和翻转2次是一样的。

强调两点:

1.什么都不做也是一种操作,虽然对结果毫无影响,但是并不代表可以被忽略。

2.如果两个操作在事实结果上是一样的,就说他们是一样的,将不再区分这些操作。

有一个以上对称轴的图形,一定具有面内旋转对称性,反过来,具有面内旋转对称性的图形,不一定有对称轴。所以面内旋转操作是比轴对称更基础的对称。

具有面内旋转对称,但是不具有轴对称的图形,比如风车:

左逆和右逆

只要是群,左逆元必等于右逆元,也就是aa^{-1}=a^{-1}a=e。证明很简单:

设a是m的左逆元,b是m的右逆元,有a=ae=a(mb)=(am)b=eb=b。

对称群:

对称群包含对某一几何对象的所有对称操作,例如旋转和反射(翻转),对陈群在计算机图形学和密码学中有重要作用。

正方体(及正八面体)的对称性

正六面体转动群_百度百科

对称群的阶(也就是保持几何对象对称的操作个数)依赖于几何对象的结构本身。比如对于立方体来说,其对称操作很少,阶仅仅是24,但是如果将其切为三阶魔方,则其对称操作立刻膨胀到一个极大的数字。

一个给定集合的所有置换构成的群叫做对称群,通常记为S_n,S就是Symmetry的意思,一个具有N个元素的集合,由它的所有置换构成的对称群的元素的个数自然就是N的阶乘N!个。任何有限群都可以看成是对称群的子群。

既是单射又是满射映射称为双射,亦称“一一映射”,同一个集合上的双射构成对称群:

双射等价于函数中的可逆函数,自变量和因变量之间存在一一对应。

正二面体群示意图,画成凯莱图如下:

包括的操作: 1.顺时针旋转90度(a).2.沿着F东北-西南方向翻转180度(b)

上面那幅图是四年前绘制的,现在来看,有些错误和幼稚,正确的画法如下:

 1.顺时针旋转90度.2.沿着F中线左右方向翻转180度

上下两图内部箭头相反是下面的箭头表示逆元操作,这个也叫做D4群。

up has problem, the right is as below:

置换和轮换

S3全置换群

思考后,感觉下面这幅凯莱图才是对的:

2024/12/17纠正:上面的是错误理解,最开始的是对的,比如,上面的图,内部是陪群,同样的翻转操作,在内部和外部是相反的。矛盾。

S3中的C3循环是偶置换,构成一个三阶循环群,其陪集构成了奇置换,一个对称群中必然有一半是奇置换,一半是偶置换。

从下图可以明显看出来{e, r, r^2} 和{e, f}构成了两个子群,因为把他们的凯莱表抽出来,也构成一个群,两个子群的阶分别是3和2,也是父群的因子,符合拉格朗日定理。

S3有四个非平凡子群,它们包括:

\{e, r, r^2\}, \{e, f\}, \{e, rf\},\{e, r^2f\}

以第四个为例,r^2fr^2f = r^2(fr^2)f = r^2(rf)f=r^3e=ee=e

子群\{e, r, r^2\}

子群\{e,f\}

子群\{e,rf\}

根据共扼群的定义,子群\{e,rf\}\{e,f\}互为共扼群。

子群\{e,r^2f\}

S3的轨道图如下,每个轨道表示一个周期变化的子群,这些子群共享单位元操作e.

一维空间只有平移操作,二维空间可以定义一个翻转,如上面的三角形。

S3构成对称的操作抽象出来如下图右侧, 有相关性的操作也是独立的对称操作。

运算从右向左进行,也就是从左向右看,先做第二个操作,在做第一个操作:

凯莱图怎么看?

根据上面S3的凯莱图来看,每个运算结果为首先执行单元所在的列对应的运算,然后再做单元所在的行的运算。以rf为例,表示先做列表示的f操作,在做行表示的r操作。

fr^2=rf 

表示做两次R在做F,等于做一次F后在做一次R。根据凯莱表可以看出,这个公式是对的。

PS:本质上,解释方式依赖于凯莱图的箭头表示的是左乘还是右乘,上面的解释是把箭头当成左乘。如果把箭头当成右乘,凯莱图会发生变化。但是无论左乘还是右乘,凯莱表不变。

左乘和右乘的区别:右乘情况下,从单位源箭头到目标状态,经历过的作用依次从左到右写出来,比如fr状态,从e出发依次经过rrf,所以fr=r^2f.

左乘恰恰相反,是从目标状态出发到单位元,依次将作用列出来,还是fr为例,按照左乘的方法,从fr到e依次是f,r所以得到的状态是fr,(也可以从r->r->f回程,则是r^2f.两者等价).

群的凯莱图一定是连通的,因为生成集的存在确保了图中任意顶点均可通过有限步生成元操作到达。假如群G中元素a无法到达q,那么就在生成元中添加元素a^{-1}q \in G,则就可以将a,q连接起来。

左陪集和右陪集有什么区别?

凯莱图一定是正则的,如下面三个图,只有最右侧的图表示一个群。

2,3合成了C6群:

凯莱图的正则性

一个代数式在凯莱图中无论从那儿出发得到的都是同一个效果,代数式不是仅适用于凯莱图的某一部分,而是适用于整个凯莱图,相同的模式遍布凯莱图形的整个结构,每个节点,任何地方。而且代数式也不是唯一的,所有的群元素操作的代数式代表的模式贯穿于这个群的整个凯莱图。因此,凯莱图总有一个统一的对称。图中每一部分的结构都与其它地方相似。我们不能说某个代数式在凯莱图的某些地方是正确的,某些地方是错的。

如果一个图以上面介绍的这些方式在整个图中重复了其内部的每一个模式,那么这个图就是正则的。每个凯莱图都是正则 。不正则的图不能表示群。因此也不是凯莱图。

下图左边是群,右边的图不是凯莱图,因此也不是群。理由就是同一个代数式,从不同节点出发,得到的效果不同。

有的节点RBRRRB = e,有的节点RBRRRB \neq e.

两种对V4凯莱图重布线的方式

将空连接也当成一个元素:

群举例

要把群的元素和群的操作分开,以模仿群为例,模仿群一共有19种转动操作,分别是六个面的

  1. 操作1.转动90度
  2. 操作2.转动180度
  3. 操作3.转动270度

六个面一共3x6 = 18种操作,再加上什么都不做的恒等变换,一共19种操作。更深入分析,每个面的三个操作实际上是一个操作的不断重演生成的,这个操作就是“旋转90度”。

而三阶魔方群的阶也就是三阶魔方群元素的数量,则有43,252,003,274,489,856,000个之多。

魔方群

定义如下操作,六个面,按方位为L(eft),R(ight),U(p),D(own),F(ront),B(ack).从每个面的角度,顺时针为正,逆时针为负(用撇标注)。顺时针和逆时针方向根据面向被转动层的旋转方向决定。

顺时针和逆时针分别相当于上面的操作1和操作3.

魔方群的元素过于巨大,我们不可能绘制出它的凯莱表,不过我们可以用其中的一个二阶子群为例,演示魔方作为群满足群的四条公里。DDU'U'==UUD'D'

其效果相当于互换顶层相邻的两个梭块儿。

群中任何一个元素的阶都是有限的,并且整除群的阶,以二阶魔方的“上 左 下 右”操作为例,循环执行六次此操作序列,魔方回归原来的位置,相当于恒等元e.

根据群论基本定理,任何一组操作如果能够恢复魔方状态,那么继续进行这组操作也一定能恢复原始的混乱状态。

C3循环群,用e表示什么都不动,r表示旋转90度,则操作构成一个三阶置换群:

S2置换群

S2置换群也是循环群C2,可以证明只存在一种二阶群,就是二阶循环群。

世界上各种形式的二阶作用构成的群都是同构的,同构群可以同等看待,不管追溯多少年之前的历史,还是展望多少亿年后的未来,无论造访世界上哪一个国家,还是旅途的脚印延伸到宇宙的尽头,都不会动摇这个事实:元素个数为2的群本质上只有一个,它就是C2/S2。

 {-1, 1}在乘法下构成群

1.封闭性:(-1)x(-1)=1, 1x1=1,(-1)x1=-1.

2.乘法结合律成立。

3.单位元为1, -1x1=-1, 1x1=1.

4.1的逆元是1,-1的逆元是-1.

整数加法群,操作是加法,集合是全体整数

1.封闭性:a,b是整数,则a+b是整数.

2.结合性:a,b,c是整数,则(a+b)+c = a + (b + c)

3.单位元为0,a是整数,0属于整数,a+0 = 0 + a = a.作后用a不变。

4.消去公里(逆元公理)对于任何整数a,存在-a属于整数,且a+(-a) = 0结果为单位元,所以任何一个整数都存在一个逆。满足群公理。

所以全体整数和加法操作,组成一个群。

整数除以5的余数构成的集合,二元运算是集合内的元素首先加再除以5取余数,

8除以5余3,-8除以5余2,余数集合为{0,1,2,3,4}.

1.封闭性:a,b是集合元素,则 (a+b)/5 还是属于集合。

2.结合性:比如2,3,4. (2 op 3) op 4 = 0 op 4 = 4 = 2 op (3 op 4) = 2 op 2 = 4.

3.单位元是0,a是集合元素,a op 0 = a.

4.消去公里(逆元公理), (0 + 0)%5 = 0, (1+0)%5 = 1, (2+0)%5 = 2, (3+0)%5 = 3, (4 + 0) % 5 = 4.

整数在乘法下不构成群,理由如下:

因为对于乘法来说,只能用1作为单位元,而一个整数n的倒数1/n是逆元,而1/n不是整数。同时0也不存在逆元0*X = 1? 这样的X不存在 。群公理三和四都不满足。所以整数在乘法下不构成群。

任何域都有加法群和乘法群,所以任何域中都一定存在0和1,因为0是加法单位元,1是乘法单位元,最美数学公式欧来公式中包含1和0不是没有原因的。

正整数和0在加法操作下不够成群,因为除了0,任何其他元素都没有逆元。

虽然所有不等于0的整数和乘法不构成群,因为非1的整数没有逆元,但是如果在乘法的基础上加上取模操作,则可以构成一个群,这就是模N乘法群。它的元素是所有和N互质的正整数,比如模6乘法群的元素是{1, 5}.

验证与整数N互质的所有正整数组成群:

1.封闭性::a,b是集合元素,则 (a*b)mod N 还是属于集合。

a与N互质,b与N互质,则根据欧几里德定理,将a,b,N分解成质数的乘积后,N中不包含a,b共有的质数,所以a*b的结果仍然和N互质,所以(a*b)mod N 仍然和N互质,也在群中(反证法,假设余数和N之间存在公因子,则这个共因子必然也存在整除的那部分中,导致a*b和N存在公因子,推出矛盾),所以满足封闭性。

如下图所示,如果共因子存在于余数(红色部分)和N之间,那么也必然存在于整除的兰则部分之间,所以和N与ab互质矛盾。

2.结合性:a,b,c与N互质,则abc = a(bc).

3.单位元是1.

4.消去公理也满足。

模N乘法群的构成

只有和N互素的余数集合,在模N的乘法下才能构成群,这种群为整数模N乘法群,自然,如果N是素数,则{1,2,3,....,N-1}构成模N乘法群。并且除了单位元1外,其余各元素的阶都等于群的阶。可以用拉格朗日定理证明这个结论,任取一个元素,根据抽屉原理,以元素为生成元构成的循环子群阶数不可能大于群的阶数,并且被是群阶的因数。所以群中元素的阶整除群的阶。

模N加法群:

对于任意正整数 nn,模n的整数集合 {0,1,2,…,n−1} 配合模n加法操作,都构成一个循环群,比如星期的划分就是模7加法循环群,群元素是{0,1,2,3,4,5,6},生成元是1,乘法操作是相加取模。

除0之外的所有的有理数在乘法下构成群。

1.显然成立。

2.显然成立。

3.存在单位元1,任何分数和单位元乘法均为原数。

4.存在逆元,即原数的倒数,倒数也是有理数。

之所以除了0之外的有理数才是群,是因为0首先是有理数,其次,0不存在逆元,0没有倒数,乘以任何数都是0,所以不存在逆元,虽然满足1,2,3,但是不满足4.

如何涉及到乘法的群,要小心0的反例。

所有有理数(包含0)的加法构成群。

1.显然成立。

2.显然成立。

3.存在单位元0,任何有理数+0都是原数。

4.存在逆元,即原有理数的负数。单位元0的逆元是它本身。

群的逆元和单位元都是唯一的。

拉格朗日定理:子群阶数一定是群阶数的约数吗?_百度知道

以S3为例的说明{f, rf, r^2f}元素互相等价,{e, r, r^2}元素互相等价。

整数加法群的例子,全体偶数的集合是整数加法群的子群,如果a^{-1}b \in H,因为a^{-1}=-a,群乘法为+,所以a^{-1}b \in H\Rightarrow -a+b \in H\Rightarrow b-a \in H,所以要么a,b都是偶数,要么a,b都是奇数,也就是a,b同奇同偶,所以,偶数是一个等价类,奇数是一个等价类。偶数和奇数在模2余上是等价的。整数加法群ℤ是一个无限循环群,它的所有子群都是形如nℤ(n是正整数)的形式。例如,2ℤ是所有偶数,3ℤ是所有3的倍数,等等。满足群公理,这些子群都是正规子群,因为ℤ是阿贝尔群,所有子群都是正规的。对于子群nℤ,整个群ℤ可以分解成n个不同的陪集,也就是模n的剩余类。例如,当n=2时,ℤ被分成偶数(0 + 2ℤ)和奇数(1 + 2ℤ),也就是模2的两个等价类。类似地,n=3时有三个等价类:0+3ℤ,1+3ℤ,2+3ℤ。每个等价类中的元素在模n的意义下是等价的,即它们的差属于nℤ。

生活中的星期制度可以划分成7个等价类,所有的星期天是一个等价类,也是开天辟地以来的所有天的集合的子群,所有的星期一,星期二,星期三,。。星期六也都是等价类,是星期日等价类的陪集,因为没有单位元,不属于子群,比如对于星期一等价类的所有元素,可以表示成7n+1,其中的任何一个元素,在所有星期一中找不到逆元,并且不封闭( 7a+1+7b+1)mod 7等于星期2)

拉格朗日定理的逆命题不一定成立,群G不一定在所有约数上都有子群。

八阶二面体群

证明循环群一定是阿贝尔群?(交换群)

令生成元为a,循环群中任意两个元素可表示为a的幂a^p, a^q,我们有:

a^p a^q = a^{p+q} = a^{q+p} = a^qa^p

所以循环群一定是阿贝尔群

如何衡量对称性?根据什么说一个图形比另一个图形更对称? 对称操作的个数?也就是群的阶?

方程“不知道”你如何排列它的根,所以把这些根排列成什么样都不应该有什么重大的影响。

修正凯莱图的运算先后顺序,先右后左,得到新的8阶2面体群。

数学女孩-伽罗瓦理论读书笔记

以下五个操作一次执行,得到什么结果? 计算过程如下图所示,和书中一致。

如果去掉“扑通向下”没有意义的作用(相当于单位元),则构成更加紧凑的变换形式:

长方形四阶群,两个操作四种对称状态,fr也可以看成是正方形的旋转180度对称,和两次翻转等价。

长方形对称群,棱形对称群都是克莱四元群,它是最小的非循环群,和两二阶循环群做直积同构:

和长方形四阶群同构的是两个电灯开关群,通过这个群可以看出,群的元素是操作的组合,但是是否所有组合的状态都是群的元素,需要对比组合后的对象状态是否一样,如果两个不同的操作组合得到的是一个状态,则这两个操作序列只能任选一个作为群元素。具体的说,如果一个操作不影响原来图形在空间中的位置,但是改变了标记的序号(比如S3中的1,2,3),但仍能保证物理占据原来的空间,这样的操作才是群中元素,否则,如果空间不便,序号也不变,那就是没有操作的e.总而言之,群中的操作是那些保持位置不变,而记号改变的所有的操作的集合。

比如在D4八阶二面体群中,我们定义的操作是为了保证对象在二维平面中的位置不变,而在魔方中魔方群众,变换保持的不是魔方在空间中的位置(魔方在空间中的位置由D8群操作保证),而是影响魔方内结构状态的变化的操作。

一个立方体有多种空间对称操作,但是如果将一个立方体做成骰子,则将会失去空间对称性。

长方形四阶群是上图八阶二面体群的一个子群,对比F的状态,我们可以抽取和长方形四阶群对应的八阶二面体群的对应状态为:

\{e, r^3f, rf, r^2\}

在八阶二面体群子群中,其凯莱表为:

r作用其左陪集为:

r\{e, r^3f, rf, r^2\} = \{r, f, r^2f, r^3\}

f作用其左陪集为:

f\{e, r^3f, rf, r^2\} = \{f, r, r^3,r^2f\}

r^2作用,其左陪集为其本身:

r^2\{e, r^3f, rf, r^2\} = \{r^2, rf, r^3f,e\}

r^3作用,其左陪集为:

r^3\{e, r^3f, rf, r^2\} = \{r^3, r^2f, f,r\}

rf作用,其左陪集为:

rf\{e, r^3f, rf, r^2\} = \{rf, r^2, e,r^3f\}

r^2f作用,其左陪集为:

r^2f\{e, r^3f, rf, r^2\} = \{r^2f, r^3, r,f\}

r^3f作用,其左陪集为:

r^3f\{e, r^3f, rf, r^2\} = \{r^3f,e, r^2,rf\}

r作用其右陪集为:

\{e, r^3f, rf, r^2\}r = \{r, r^2f, f, r^3\}

f作用其右陪集为:

\{e, r^3f, rf, r^2\}f = \{f, r^3, r,r^2f\}

r^2作用,其右陪集为其本身:

\{e, r^3f, rf, r^2\} r^2= \{r^2, rf, r^3f,e\}

r^3作用,其右陪集为:

\{e, r^3f, rf, r^2\} r^3= \{r^3, f, r^2f,r\}

rf作用,其右陪集为:

\{e, r^3f, rf, r^2\}rf = \{rf, r^2, e,r^3f\}

r^2f作用,其右陪集为:

\{e, r^3f, rf, r^2\} r^2f= \{r^2f, r, r^3,f\}

r^3f作用,其右陪集为:

\{e, r^3f, rf, r^2\} r^3f= \{r^3f,e, r^2,rf\}

看上去左陪集等于右陪集,所以,克莱因四元群是八阶二面体群的正规子群?

八阶二面体群的状态转换图,左右两幅图是等价的:

以右图为例,如果将\{e, r^3f, rf, r^2\}进行f操作,则所有状态都将进入其中同一个陪集。如果都进行r操作,也是同样的进入同一个陪集。如果都进行r^2相当于交换位置,还是原来的子群。从这幅图上可以体会群,子群,陪集的几何意义。八阶二面体群就是D4群。

实数乘法群

非0实数的集合按照乘法构成的群,是交换群。

实数加法群

所有实数集合按照加法构成的群,是交换群。

线性群

所有nxn可逆矩阵集合按照矩阵乘法构成一般线性群,但不是交换群。

六阶循环矩阵群

圆群

绝对值为1的复数的集合,复平面上单位圆上点的集合,是复数乘法群C^\times的子群,称为圆群。

初等交换-2群

如果一个群中每个元素的逆是自身,这个群需要满足什么条件,这些条件是充分必要的么?

比如克莱因四元群,和C2 X C2 X C2的直积群,其凯莱图特点是主对角线元素全部为e.对于素数阶群,其凯莱图的主对角线不可能有超过两个单位元的情况,因为如果有这种情况,说明除了e*e=e之外,还有另一个元素a*a=e,这说明(e,a)构成了一个二阶群,但是根据拉格朗日定理,母群是素数,不可能有2阶子群。

C3群,主对角线只有1个单位元:

克莱因四元群,主对角线全部是单位元,所有元素都是二阶的。

阿贝尔群的可视化方法

循环群一定是阿贝尔群,因为只对应一个生成元操作,同一个操作无论进行多少次都是可以拆分交换的。所以素数阶群一定是循环群,也一定是阿贝尔群。

群运算可交换性决定了在阿贝尔群的凯莱图中,从同一结点出发的每对箭头都应该形成一个闭合的“菱形”。是不是标准的菱形并不重要,重要的是连接的模式。如下图所示,在阿贝尔群的凯莱图中不会出现左边这种模式,永远都是右边这种模式。

按照这个规则,S3是非阿贝尔群,D4也是非阿贝尔群, 克莱因四元群是阿贝尔群。对于阿贝尔群来说,左乘和右乘不改变凯莱图的结构,而非阿贝尔群的凯莱图会改变:

直积和笛卡尔积

直积A X B的构造步骤:

1.从A的凯莱图出发。

2.让A的凯莱图的每个节点膨胀变大,变大到能够容纳下B的凯莱图。

3.用B凯莱图的副本替代第二步中膨胀的每个节点。

4.去掉A的节点(上一步已经被替代),同时用A的箭头连接B的每个副本中“对应”的节点。因为每个副本都是一样的,所以“对应”很好理解。也就是说,去掉A的凯来图的连线,但是把它的箭头作为如何连接B副本的对应节点的连线。如果A中有多条不同类型的连线,则都应用上。

如下图是D4XC3的直积:

C3 X D4和D4XC3是同构的:

AxB和BxA并不是同一个群,但是它们必然是同构的,在群的意义上,同构意味着相同,也就是:

A\times B \cong B\times A

如何从AxB的凯莱图转换成BxA的?

将B中的每个节点膨胀,并且从膨胀的节点开始,按照A中的连线按图索骥,将所有连线中的节点吸收进膨胀的节点,并且在吸收的过程中保持A中的连线不变。完成后,AxB的凯莱图就会转换成BxA的了。

阿贝尔群的模式

阿贝尔群的典型模式是所有的箭头都平行于与之颜色相同的箭头(代表同一个生成元),同时垂直于其他颜色的箭头。所有的阿贝尔群的凯莱图形都具有这样的平行-垂直模式,这些模式不仅表明了群是可交换的,而且揭示了它的直积结构。

每个有限阿贝尔群都同构于循环群的直积,比如C8分解为1x8.也就是C8循环群自身。

为什么四次方程有根式解

对于一般四次方程,4个根的全部置换构成对称群(置换群S4),有24个元素,它有一个正规子群A4,是交错群,有12个元素,接下来是的子群是正规子群是上面提到的克莱因群,有四个元素,而克莱因群又是C2和C2的直积,也就是说它还有一个正规子群C2,这是一个单群,只有一个子群就是单位群e,所以我们可以看到,四次方程有根式解。

A4是S4的正规子群,可以从下图看出来,可以看到,绿色的线条明显把立方体的8个角上的小的C3循环群的陪集链接起来,仔细观察结构发现,绿色线联起来的结构还可以再分为两组,每一组是个四棱锥结构,分别占用四个C3循环群的陪集:

这样的结构造成了S4可以继续分解为A4,A4又是正规的,所以S4可以继续分解。

为什么三次方程有根式解

一般的三次方程,三个根的全部置换构成群S3,它有一个正规子群C3,C3是单群,只有一个子群e,所以三阶方程可解。

为何克莱因四元群是A4的正规子群? 看下图,黄色的和深褐色的是相同的:

H_4a的变换中(e,v,h,hv)分别映射到了如下黑箭头指向的位置,可以看到,这种变换恰好就是a左乘的结果:

克莱因四元群有三个子群,因为是阿贝尔群,所以所有子群都是正规的,下图中绿色线对应v垂直翻转操作,红色线h代表的是水平翻转操作,hv表示的是先水平后翻转操作(或者先翻转后水平,阿贝尔群无所谓)。深蓝色的代表的就是hv操作,所以 {e,h}, {e,v}, {e, hv}三个都是克莱因群的子群。

克莱因四元群是A4的正规子群,它的左右陪集相同,而克莱因四元群是可解的,这也是为何四次方程有根式解的原因。形式上看,从子群出发的所有操作,会进入到同一个陪集。

之所以五次方程没有根式解,是因为五次方程S4有一个正规子群A5,它是单群,没有正规真子群,仔细观察全图可发现该群不可解的蛛丝马迹,所有的可视子群看上去都非常不正规,虽然它有多个子群,但是没有一个子群是正规的(有子群但是没有正规子群的叫做单群),以下面红色的子群为例,如果该子群是正规的,那么从红色子群出发的蓝箭头都应该进入到同一个陪集,但是实施恰恰相反,它们各自进入了不同的五阶循环群。

即便是正规的群,也不是所有的子群都是正规的,但是如果存在正规的子群,并且这个正规子群可解,那么这个方程就可解。

Algorithmic-Graph-Theory/(MAA Classroom Resource Materials) (MAA Problem Book Series) Nathan Carter - Visual Group Theory-The Mathematical Association of America (2009).pdf at main · Invitation-to-Algorithmic-Graph-Theory/Algorithmic-Graph-Theory · GitHub

下面这张凯莱图把克莱因群的元素绘制成了一个四面体结构,想象一下我们朝着它仍一个二向薄,按照垂直于屏幕方向一巴掌拍下去,把这个棱锥拍到二维平面,它是不是就和前面绘制的长方体凯莱图一样了(除了对角线的HV操作这里也链接起来了之外),都是一个长方形结构并且对变都是同颜色的(相同操作)。

所以从上面这幅图的角度看,克莱因四元群的三个子群都非常清楚了,它是阿贝尔群,因为无论从那个节点开始,左乘{e,h,v,hv}中的元素和右乘{e,h,v,hv}中的元素,都能到达同样的目的地,说明是阿贝尔群,子群都是正规的。

克莱因群各子群的左陪集和右陪集,经过逐一比较可以看出,每个子群的左陪集和右陪集相等,所以克莱因四元群的每个非平凡子群都是正规子群。

群定理-群G的任意个子群之间的交集还是子群

1.封闭性:如果a,b属于取交后的集合,则ab必定属于取交前的每个子群,所以ab自然也属于最后取交后的集合,所以封闭性成立。

2.结合律,同样道理,如果a,b,c属于取交后的集合,则a,b,c必定是取交前的每个子群的元素,所以满足每个子群中都满足(ab)c=a(bc).

3.存在单位元:由于取交前每个子群都和大群G共享一个单位元e,所以它也属于取交后集合的元素,对于取交后的集合中任何一个元素a,他也是G中的元素,满足ae=ea=a.所以取交后存在单位元。

4.存在逆元:对于取得交后的任意元素a,它自然也存在于取交前的各个子群中,再每个子群中,都有唯一的一个逆元a^{-1},后者必然也存在于每个子群中,所以取交后必然也存在于最后的交集中,所以交集中每个元素a,都存在唯一的一个逆元a^{-1},满足aa^{-1} = e,也就是每个元素存在逆元。

所以,群G的所有子群构成的交集满足四条群公理,是子群。

形式化的定义见下图:

cycle notation 表示和S4对称群以及A4偶置换群

同一个集合上的双射构成对称群,我们看1 2 3 4 四个元素组成的4!=24 阶置换构成的对称群。

S4对陈群一共24个元素,其中包括12个偶置换和12个奇置换,它与如下立方体同构:

以上群图使用的生成元是:(0 1)和(1 3 2):

这里一个有意思的地方是,第一个生成元生成正方体的8个角,第二个生成元负责生成每个角的C3循环群。生成元(0 1)是头两个元素置换,四个元素,首元素一共有0,1,2,3四种情况,那怎么生成8个角呢?其实这里是一个排列组合问题, 只置换前两个元素并不能遍历所有的C3初始状态,因为固定前面两个元素后,后面两个元素的交换不再当前角的C3群中。仔细观察上图的正方体,会发现体对角的三阶群的首元素是一样的,但是后面两个元素发生了置换。也就是说,对角的两个三角形分别是首位元素相同的奇偶排列。

所以在第一个生成元作用下,后两个元素2 3 有交换和不交换两种情况,恰好对应4*2=8种情况,也就是正方体的8个顶点。

还可以再换个角度,对角度两个C3可以看成一个S3,一共六个元素,8个顶点一共四组S3,所以一共是4*6=24个,这个4就是生成元1生成的。

如果换一对生成元,使用(0 1)和(0 3 2 1),则会生成一个完全等价但是形状不同的群图,由切角的立方体变成了切角的正8面体。

怎么理解换了生成元之后,同一个群的凯莱图发生变化呢?因为开来图的形状是由连线决定的,而连线则是生成元操作,所以改变生成元,自然改变了骨架,也就自然改变了凯莱图的形状,不过即便形状改变了,我们可以依赖空间想象能力,将下图脑补成切角立方体的形状,由于身成元(0 1)仍然存在,也就是下图的绿色线条,所以我们保留它,但是(0 3 2 1)不存在了,也就是深红色的平行四边形的边对应的操作,我们擦除它。之后用蓝色箭头和橙色箭头表示生成元(1 3 2),蓝色和橙色分开的目的是我们找出蓝色箭头组成的三角形作为切角立方体的一个角,三个橙色箭头表示的三角形作为立方体中三个卫星边对应的(1 3 2)循环角。虚线(生成元(0 1))表示立方体的角到周围三个卫星循环角的变换,对应立方体的一个角向另外三个相邻角发出去的三条边,这样,是不是就从八面体群图中找到了立方体的构建?所以它们是等价的。

再换一对生成元(0 3 2 1) 红色箭头,(0 2 1) 绿色箭头:

得到如下的凯莱图,可见凯莱图又变化了一种形态,但是本质上和前面两个描述的是同一个群,也就是S4群。

使用(0 1),(1 2),(2 3)作为生成元的S4群,它是由三个对换构成:

使用生成元(0 1)和(1 3 2)的另一种形态,它是上面的三维立方体拍扁后生成的:

S4有三个克莱因四元群子群,这四个V4子群中只有一个是正规子群,其正规性如下图所示:

选择S4的另一个非正规的V4子群,可以看到其左陪集和右陪集不同,说明这个子群确实是不正规的:

对换和轮换

在集合 X 中任取一个元素 x ,因为 Sn 是有限群,必然存在r, r是使 f^r(x)=x的最小正整数,(一种递归性质的定义)称 (x,f(x),……,fr−1(x)) 为 f 的r− 轮换, r 是这个轮换的长度,长度为2的轮换叫做对换

f(f(f(1))) = 1, 三层f表示轮换的长度为3.长度为2的轮换叫做对换,也就是两个元素之间交换。

也就是说,置换分为轮换和对换,对换又是一种特殊的轮换,多个对换可以构成一个轮换。所有的置换都是轮换。

兑换的形式是f(f(a)) = a.作用两次回到原来的位置。

两个能通过循环移位得到的轮换是相同的,比如 (1,2,3),(2,3,1),他们用cycle notation表示的都是

偶置换:偶置换是置换的一个子类,长度为2的轮换称为对换,每个置换都可以表示成对换的乘积。一个可以表示成偶数个对换的乘积称为偶置换。

当把置换写成对换的乘积时,不要求(也不能要求)这些对换没有公共的点,也不能保证表示的唯一性;甚至不能保证乘积中出现的对换的个数的唯一性。但是我们可以证明,当把一个置换 g 表示成对换的乘积,所需要的对换的个数的奇偶是被 g 完全确定的。一个可以表示成偶数个对换的乘积称为偶置换(even permutation),否则称为奇置换(odd permutation)。

比如上面S4的全置换群,每个置换都不是唯一的,可以反复进行多次,但是需要的对换次数却是唯一确定的。也就是置换的奇偶性。

R-轮换的奇偶性

排列的初始状态可以看成是单位元,是偶排列,每进行一次R轮换后的奇偶性,依赖于R的值,准确的说,轮换的奇偶性就是R-1的奇偶性,例如对于三轮换来说,3-1=2是偶数,所以每次轮换后的结果都是偶排列:

对于四轮换,每次轮换后都改变奇偶性:

程序代码:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
	int n;
	printf("请输入数字序列的长度:");
	scanf("%d", &n);

	int a[n];
	printf("请输入%d个数字(用空格分隔):", n);
	for (int i = 0; i < n; i++) {
		scanf("%d", &a[i]);
	}

	// 计算逆序数
	int count = 0;
	for (int i = 0; i < n - 1; i++) {
		for (int j = i + 1; j < n; j++) {
			if (a[i] > a[j]) {
				count++;
			}
		}
	}

	printf("逆序数为:%d\n", count);
	printf("该排列是%s排列\n", count % 2 == 0 ? "偶" : "奇");

	return 0;
}

全体偶置换在置换的乘法下成为一个群,称为n上的交错群(alternating group),记作 A(n)。A(n) 是 S(n) 的正规子群。同样用 Alt(n),或 An来表示 n 元集合上的交错群。交错群在有限群理论中具有重要地位。当n>=5时,An是单群。

举例来说,S3一共有六个元素,这六个元素的每个都可以叫做置换,但是C3构成轮换,C3的陪集是对换。

任何一个轮换都可以由不同的对换得到。

如果一个置换可以通过偶数个对换得到,那么它只能通过偶数个对换得到;

如果一个置换可以通过奇数个对换得到,那么它也只能通过奇数个置换得到。

一个对称群Sn中所有的偶置换一定构成一个群,因为单位元是偶置换,这个群叫做交错群,阶数为:\boldsymbol{\frac{n!}{2}}

理解群乘法不符合交换律:

1. 先穿袜子再穿鞋,和先穿鞋再穿袜子不一样,先起床后尿尿,和先尿尿后起床也不一样。

2. 先 grep "hello" 再grep "world" 和先grep "world"再grep "hello"得到的结果一样,但是中间列表是不一样的。

3.LINUX操作系统中的函数调用可以看成群(满足结合律,单位元就是空函数,逆元是回滚函数,一组函数封装成大函数后仍是一个函数说明满足封闭性),这个群是不可交换的,例如开发内核驱动的时候,spec要求首先作复位,再enable IP硬件,如果操作反了,轻则硬件不工作,重则烧毁芯片。

满足交换律的群叫做阿贝尔群,也叫交换群。S3是非阿贝尔群,C3是阿贝尔群,阿贝尔群满足交换律,不用区分左右陪集,所以只要有子群,一定是正规的。

假设卧室的三面墙上都挂着画,每面墙上只挂一副,逆向重新安排画的位置来看看哪种安排最为合适,你不能用第四面墙,因为它上面有一扇窗户,只用两种作用,1.互换左边墙与中间墙上的画。2.互换中间墙和右边墙上的画,也就是只有如下两个作用,分别用\alpha \ \ \ \beta表示两个作用作为生成元

凯莱图是

当然,也可以选择使用其它的生成元,选择不同的生成元不影响群的性质。

数学女孩中的S3,和上面画的S3生成元不同:

采用不同的生成元,可以凸显子群

通过选择含有子群生成元的群生成元,可以使得任何子群凸显出来,下图展示了对于六阶循环群,选用不同的生成元得到的凯莱图:

如何图形化理解正规?

设G是一个 ,H是其子群。 若H的左陪集与右陪集总是相等(对任何的a∈G,aH=Ha), 则称H是G的正规子群或不变子群,记为H⊴G。注意这里指的是两个集合相同,而非计算过程中的对应元素相同,也就是不要求对于H中的任意元素c,ac==ca,而仅仅要求各自计算后,结果集合中的元素是相同的,所以阿贝尔群的子群一定是正规的,但反过来不成立。

左陪集和右陪集相等是集合意义上的相等,并不是左陪集和右陪集对应元素相等(除非是阿贝尔群)。

首先看S3的子群C_3

翻转f的作用是(2 3):

(2 3) {e r r^2} = {f, r^2f, rf};

 {e r r^2}(2 3) = {f, rf, r^2f}; 其它计算类似。

正规子群和陪集

子群的陪集与子群是什么关系呢?子群及其陪集之间一个最显著的差别在于前者包含单位元在内,而后者在其它方面具有和子集相似的结构,只不过有可能不包含单位元(并正因为此,陪集并不总是子群)。

只有正规子群才有陪集么?不是的,看下面的回答:

非正规子群无法取商,形式上看,划分的左(右)陪集合无法通过一步操作g到达同样的右(左)陪集。如果强制将其收缩为一点,则会成为下面第三张图的情况,从同一个点触发竟然有三个相同的操作(蓝色表示同一个操作)到达三个不同的地方,这不可能是群。

S3的陪集

下面S3凯莱图约定的箭头表示左乘(群论彩图版中S3的置换图箭头表示右乘)。

可以看出来,S3的所有子群中,只有C3是正规子群,C3是3阶循环群,可解。

更正一下,上面计算S3的陪集是按照置换操作从右到左的顺序进行的,不过貌似求陪集是从左到右进行,这样后,左陪集是刚性移动,而右陪集则是在子群的基础上进行了r操作,相当于前面计算左右陪集的时候颠倒了一下,如下图所示:

所以前面的凯莱图画错了,错误的原因是箭头, 这里凯莱图的箭头约定应该是右乘,如果箭头表示左乘,就是前面错误的样子。更正后上图是对的。

左陪集看起来像是子群的副本,而右陪集的元素同拆毁功能比较分散,如果用箭头表示左乘,那么右陪集将是子群的副本,而左陪集将是分散的,如下面这样子,所以不同的箭头结构上看上去是相对的,但是群的可解性要求子群左右陪集相同,应该就是和箭头关系不大了。阿贝尔群箭头定义左乘或者右乘都没有关系。

对于群G的子群H生成的左(右)陪集中的任意元素c, 再次左(右)乘子群,得到的仍然是原陪集。

证明:

1.设g属于G,h属于H,生成的左陪集中的元素gh,则ghH =g(hH) =gH,所以左陪集中的元素再次左乘子群,得到的仍然是原左陪集。

2.设g属于G,h属于H,生成的右陪集中的元素hg,则Hhg =(Hh)g =Hg,所以右陪集中的元素再次右乘子群,得到的仍然是原右陪集。

以S3为例,其\{e \ \ r^2f \}的其中一个右陪集\{r \ \ rf \},则 \{e \ \ r^2f \}r = \{r \ \ rf \}\{e \ \ r^2f \}rf = \{rf \ \ r\}

成立。

前面提到,全体整数在加法操作下构成群,叫做整数加法群,记做:《Z,+》或者《Z,+,0》,其中后者表示法把单位元也表示了出来。

考虑到整数加法群,《Z,+》自然可以想到,在偶整数上做加法可以成群,如0+2=2,2+4=6…,定义偶数集合 O={2Z,Z属于任意整数}为整数上的所有偶数,则《O,+》或者《O,+,0》是《Z,+》的子群。记为H。

为了验证上面的定义,我们取H的陪集1H = {E, E属于2Z+1},1左乘H得到的是全体奇数的集合,全体奇数集合是H的左陪集(其实也是右陪集)。

我们从全体奇数中取一个元素,左乘作用在H上,相当于将H中的一个元素+奇数,由于H是全体偶数的集合,偶数+奇数还是奇数,所以作用后仍然属于奇数陪集,定理得到证明。

当H正规时,等式gH=Hg成立,g箭头一致的从H指向gH(Hg),所以相当于从一个陪集到另一个陪集的箭头不会产生不一致性,这样折叠后,每个陪集可以看成商群中的一个元素。

有些群的所有子群都是正规子群,比如Q4群:

五次方程没有根解析式的图形化理解

A_5是回到这个问题的关键,用如下两个偶置换,这两个生成元分别是由单位元经过四次对换和两次对换生成的,所与都是偶置换。

由上述两个偶置换作为生成元绘制出来的A5群为足球形状,其中一个5阶子群的元素构成足球上的一个正五边形,也就是下图中的蓝色箭头围成的正五边形,它的元素包括:

H={ (0 1 2 3 4), (1 2 3 4 0), (2 3 4 0 1), (3 4 0 1 2), (4 0 1 2 3)};

这是一个五阶循环子群,它相对于绿色箭头,也就是(0 1) (2 3)作用的左陪集为:

{(0 1) (2 3)}*H = {(0 1) (2 3)}*{ (0 1 2 3 4), (1 2 3 4 0), (2 3 4 0 1), (3 4 0 1 2), (4 0 1 2 3)}

{ (1 0 3 2 4), (2 1 4 3 0), (3 2 0 4 1), (4 3 1 0 2), (0 4 2 1 3)}

左陪集也就是下图中橙色箭头指向的五个元素的集合。

现在来看一看{(0 1) (2 3)}作用下,H子群的右陪集:

H*{(0 1) (2 3)} = { (0 1 2 3 4), (1 2 3 4 0), (2 3 4 0 1), (3 4 0 1 2), (4 0 1 2 3)}*{(0 1) (2 3)} =

{ (1 0 3 2 4), (0 3 2 4 1), (3 2 4 1 0), (2 4 1 0 3), (4 1 0 3 2)}

现在结论很明显了,H子群的陪集是和子群形态和结构完全一样的正五边形,如果H是正规的,那么H的左陪集(橙色五个元素)应该和右陪集的五个元素重合,但是我们看到,H的左陪集的五个元素分别进入了五个不同的右陪集,而并非进入同一个右陪集合。

所以从这个角度来讲,至少H不是正规的,H是更基本的A5对称构件,其实无论怎样寻找,A5的所所有子群都没有左右陪集对称的形态,也就是说,A5的所有子群都没有正规的,A5已经是S5中对称的基本构件了,在除此之外,S5中在也找不到其他的对称了,A5是单群。

当折叠陪集时,子群连接到其左陪集的箭头和右陪集不一致,导致陪集无法折叠塌缩,正因为这样结构的差异,导致一般五次方程不可解。

计算右陪集,根据右乘的规则,子群每次经过蓝色线条代表的操作会进入一个新的右陪集,而每次经过红色箭头则保持在当前右陪集不变,所以,H子群的右陪集都是红色箭头围成的正五边形结构,如果让结构塌缩,则会构造成一个正二十面体:

当同一颜色的箭头由一个左陪集的节点连接到两个或更多个不同陪集的结点时,折叠陪集就会产生不一致的箭头:

逆序数定义

逆序:在全排列中,当某一对元素的先后次序与标准次序不同时,就说它构成 1 个逆序。逆序数 一个排列中所有逆序的总数叫做这个排列的逆序数。记排列a_n的逆序数为 t ,则有:

t=\sum_{i=1}^{n}\sum_{j=1}^{i-1}[a_{i}<a_j]

奇排列与偶排列 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列。对换:在排列中,将任意两个元素对调,其余的元素不动的操作叫做对换。特别地,将相邻的两个元素对换,叫做相邻对换.

对换定理:一个排列中的任意两个元素对换,排列改变奇偶性。

S4对称群的形状是怎么对应到立方体的对称上的?

前面说的,S4有24个元素,而正方体的对称群也是24阶的,并且这两个群是同构的关系,那么怎么理解S4对称群和立方体对称操作同构呢?

可以这样理解,将立方体的8个顶点分成两组,一组是{0,1,2,3},另一组是{0',1',2',3'},后者是前者的镜像,布局如下,分别选择每个集合中的一个顶点不动,然后将循环其余三个点,以下图的位置为例,保持0点不动,将1,2,3按照C3循环群的方式转动0,120,240度,正方体占据的空间保持不变,由于每组有四个顶点,依次放到0点的位置,每个位置有三种对称方案,所以每一组有3*4=12种对称方案。同理,镜像组(相当于将正方体翻转,0'朝外置换当前0的位置)又会得到12种对称操作方案,前后加起来一共24种类对称方案, 正好对应S4的所有元素。

怎样将正方体对称和S4的四元素全置换对应起来呢?可以参考下图的生成元(0 1)和 (1 2 3).包含一个对换和一个三轮换,这两个生成元就可以生成S4群的所有元素,也能够和立方体的对称性联系起来。

首先(1 2 3)三轮换中有一个不动元素,就是0,相当于围绕顶点0的三个梭旋转0,120,240度。

而(0 1)置换相当于不动点在空间中的位置中的元素和三轮换中的某个元素(比如左边梭)进进行了一个交换,原不动点被交换到了左边梭,而左边梭元素变到了不动点空间。由于两个交换点在空间中的位置保持不变,所以这个交换可以用一个生成元(0 1)代替。

正方体的对称操作可以从可以从D4群的对称操作推导出来,D4群的参照物是正方形,群阶为8,正方体比正方形多了一个维度,六个面每两个对面可以看作是一个D4群8种对称,6个面分成三组,所以正方体的对称操作一共有3X8=24种。

和前面介绍的类似,不同的生成元会得到不同的群图,我们采用这种视角方式得到的24种群置换和通过寻找正方体的面对称轴的方式得到的结果是一样的,但是视角不同,两者之间存在一一映射关系。

长除法步骤

1.用分子的第一项除以分母的最高次项(即次数最高的项,此处为x),得到首商,写在横线之上(x³÷x=x²)。

2.将分母乘以首商,乘积写在分子前两项之下(同类项对齐) x²×(x−3) =x³−3x²

3.从分子的相应项中减去刚得到的乘积(消去相等项,把不相等的项结合起来),得到第一余式,写在下面。然后,将分子的下一项“拿下来”。

4.把第一余式当作新的被除式,重复前三步,得到次商与第二余式(直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式 )

5.重复第四步,得到三商与第三余式。余式小于除式次数,运算结束.

证明在模n乘法群中,每个元素一定存在逆元。

定理:在模n乘法群中,每个元素a都有一个乘法逆元,即集合存在一个元素b,使得ab ≡ 1 (mod n)

证明过程:

设a是模n乘法群中的一个元素,由于a与n互质,根据贝祖定理(贝祖定理可以看成是费马大定理在一次时的特例),我们可以找到整数x和y,使得:

ax + ny = 1

现在,将等式两侧对n取模:

ax + ny ≡ 1 (mod n)

由于 ny ≡ 0 (mod n),我们有:

ax ≡ 1 (mod n)

这表明如果x是群中的元素,则它就是a在模n乘法群中的逆元,换言之,存在一个元素b=x,使得ab ≡ 1 (mod n)。

下一步就要证明x是群中的元素,也就是要证明x与n互质数,根据贝祖等式,假如x和n之间存在公因子,则存在一个公因子p,所以贝祖等式左侧可以整除p,而右侧不可能整除p(右侧是k*n+1,k为整数,虽然n整除p,但是1不可能整除p),所以假设失败,x和n互质,说明x是群中元素。

ax + ny ≡ 1 (mod n)

模n乘法群是一个群,因为每个元素都有一个乘法逆元,它是和n互素的余数集合。

严谨一点,还需要证明x可以是n的余数,这是显然的,即便x大于n,x mod n的余数也一定满足这个贝祖条件,这个时候可以让x取x/n的余数,得到一个满足n的余数的逆元x.

只要找到了全部和n互质的元素,互相之间就会存在逆元,根据ax + ny = 1,两边乘以任意自然数,则a和n的线性组合就可以构成任何自然数。

封闭性的证明

假设a,b是模n乘法群中的元素,则根据贝祖定理,存在x_1,y_1,x_2,y_2

bx_1+ny_1=1 \\ \\ ax_2+ny_2=1

两式相乘:

abx_1x_2+anx_1y_2+bnx_2y_1+n^2y_1y_2=1

两边对n取模,所以,存在整数s=x1x2, 使ab*s mod n = 1, 也就是ab*s-1 = k*n, ab*s+k*n = 1,满足贝祖定理的存在性 gcd(n,ab)=1,所以ab也是群中元素。

对于任意一个数字N等于与其所有因子互质的余数个数之合,比如数学女孩儿中介绍x^12-1的分解,12的因数有1,2,3,4,6,12,与其因数互质的余数个数分别为1,1,2,2,2,4.

1+1+2+2+2+4=12.

又比如数字14的因子分别为1,2,7,14,与其互质的余数个数分别为1,1,6,6(1 3 5 9 11 13),1+1+6+6=14.

实际上是欧拉函数中的定理:

欧拉函数 - OI Wiki

证明循环群 G 的阶为 n 时,生成元是与 n互质的元素,可按以下步骤进行:

整数a,b的线性组合得到的值一定是最大公约数的倍数,就像宇宙中所有的物质组合都是质子的倍数一样。

判定多项式不可约

爱森斯坦判别法,一个整系数多项式是不可约的,如果我们能找到一个满足下列要求的素数p:

1.x的最高次幂的系数不是p的倍数,而其他所有系数都是p的倍数。

2.常数项不是p^2的倍数。

则是既约多项式,举例如下:

x^{10} + 4x^7 + 18x + 14 = 0

套用判别式如下:

取素数p=2.

1.x的最高次幂x^{10}系数是1,不是2的倍数。

2.x的其它系数包括常数项都是2的倍数。(4,18,14)。

3.常数项14,不是4的倍数。

所以,上式通过了测试,是不可约多项式。

用伽罗瓦理论的观点分析二次方程:x^2-x-1=0的可解性。

设根分别为a,b.

1.a+b = 1

2.ab = -1.

在有理域内分辨不出来a和b两个根。

我们找一个关于根的有理式V,根据根的不同排列能够得到不同的值,这里找:

V=a-b

也就是书上的

 \varphi (x_1, x_2) = x_1 - x_2

调换两个根,多一个负号,所以是不对称有理式,为了将其划归为有理域上的对称多项式,两边平方:

(a-b)^2 = (a+b)^2-4ab = 1+4 =5

这个时候交换两个根,有理式值不变,所以得到两个V值。

V=\pm \sqrt{5}

设:

V_1=\sqrt{5},\ \ V_2=-\sqrt{5}

前面是用根表示V,接下来用V表示根,假设V=V_1=\sqrt{5}:

a-b=V, a+b = 1

得到:

a = \varphi_1 (V)=\frac{1+V}{2}, b=\varphi_2 (V)=\frac{1-V}{2}

定义:

f_v(x)=(x-V_1)(x-V_2)=x^2-5

其是有理域上的多项式。其中一个根是\sqrt{5}.

前面假设了V=V_1=\sqrt{5},所以:

a = \varphi_1 (V)=\frac{1+\sqrt{5}}{2}, b=\varphi_2 (V)=\frac{1-\sqrt{5}}{2}

如果V=V_1=-\sqrt{5},则:

a = \varphi_1 (V)=\frac{1-\sqrt{5}}{2}, b=\varphi_2 (V)=\frac{1+\sqrt{5}}{2}

所以,根的排列不同,对应V的不同取值,此方程在有理域内的伽罗瓦群是C2群:

而如果在Q(\sqrt{5})扩域内考虑方程的伽罗瓦群。此时:

\varphi (x_1, x_2) = x_1 - x_2

本身就在域内,不需要平方,所以其对应的伽罗瓦群要缩小,变成了单位群,也就是扑通向下的置换,也就是压根不能做置换,所以扩域后,对应的伽罗瓦群缩小。

Q(\sqrt{2}) = a + b \sqrt{2}

(2-\sqrt{2})\cdot (3+2\sqrt{2}) = 6+4\sqrt{2}-3\sqrt{2}-4 = 2+\sqrt{2}
对于这个等式,你把所有的根号2换成负根号2,不用计算也会成立,等式区分不出来正根号2还是负根号2.

(2+\sqrt{2})\cdot (3-2\sqrt{2}) = 6-4\sqrt{2}+3\sqrt{2}-4 = 2-\sqrt{2}

Q(\sqrt{2})的基为\{1, \sqrt{2}\},扩张次数为Q(\sqrt{2})/Q = 2

所以任意Q(\sqrt{2})中的1+2\sqrt{2}

1,\ 1+2\sqrt{2}, \ (1+2\sqrt{2})^2

一定线性相关,比如:

\boldsymbol{(-7)}\cdot 1+\boldsymbol{(-2)}\cdot (1+2\sqrt{2})+\boldsymbol{1}\cdot (1+2\sqrt{2})^2=0

相关系数为-7, -2, 1.

四次扩域

\boldsymbol{Q(\sqrt{2}, \ \sqrt{5}) = Q(\sqrt{2})(\sqrt{5}) = (a+b\sqrt{2})+(c+d\sqrt{2})\sqrt{5}=a+b\sqrt{2}+c\sqrt{5}+d\sqrt{10}}

基为\{1, \sqrt{2}, \sqrt{5}, \sqrt{10}\}

循环标记法表示乘法操作,从右向左计算

正规扩域

设E是F的一个有限扩域,且f(x)是F上的任意一个不可约多项式,如果E含有f(x)的一个根,那么E就含有f(x)的所有根,则称E是F的一个正规扩域

例如:f(x)=x^2-2x-1在Q上是不可约的,它的一个根:1+\sqrt{2}\in Q(\sqrt{2}),则它的另一个根1-\sqrt{2}也属于Q(\sqrt{2})

扩域的封闭性

p+q\sqrt{r}ax^2+bx+c=0的一个根,所以:

a(p+q\sqrt{r})^2+b(p+q\sqrt{r})+c=a(p^2+q^2r+2pq\sqrt{r})+b(p+q\sqrt{r})+c =0

ap^2+aq^2r+bp+c+(2apq + bq)\sqrt{r}=0

所以:

ap^2+aq^2r+bp+c=0

2apq + bq=0

而如果将p-q\sqrt{r}代入ax^2+bx+c=0

a(p-q\sqrt{r})^2+b(p-q\sqrt{r})+c=a(p^2+q^2r-2pq\sqrt{r})+b(p-q\sqrt{r})+c =0

ap^2+aq^2r+bp+c-(2apq + bq)\sqrt{r}=0

所以,如果p+q\sqrt{r}是二次方程的一个根,p-q\sqrt{r}也一定是它的根,扩域Q(\sqrt{r})包含二次方程的所有根。

\boldsymbol{\sigma((a+b\sqrt{r})(p+q\sqrt{r})=\sigma(ap+bqr+(bp+aq)\sqrt{r})=ap+bqr-(bp+aq)\sqrt{r})}

\boldsymbol{\sigma(a+b\sqrt{r})\sigma(p+q\sqrt{r})=(a-b\sqrt{r})(p-q\sqrt{r})=ap + bqr -(pb+qa)\sqrt{r}}

所以:

\boldsymbol{\sigma[(a+b\sqrt{r})(p+q\sqrt{r})]=\sigma(a+b\sqrt{r})\sigma(p+q\sqrt{r})}

自同构

域的对称性

Q(\sqrt{2})的伽罗瓦群为二阶循环群C2,包含恒等和交换两个作用,验证Q(\sqrt{2})满足在这两个作用下的对称性。

减法和除法下的对称性:

x=a+b\sqrt{2},y=c+d\sqrt{2}

\sigma(x)=a-b\sqrt{2} \\ \sigma(y)=c-d\sqrt{2} \\ \boldsymbol{\sigma(x-y)=\sigma[(a-c)+(b-d)\sqrt{2}]=(a-c)-(b-d)\sqrt{2}=(a-b\sqrt{2})-(c-d\sqrt{2})=\sigma(x)-\sigma(y)}

\sigma(\frac{x}{y})=\sigma{(\frac{a+b\sqrt{2}}{c+d\sqrt{2}})}=\sigma(\frac{ac-2bd+(bc-ad)\sqrt{2}}{c^2-2d^2})=\frac{ac-2bd-(bc-ad)\sqrt{2}}{c^2-2d^2}

\frac{\sigma(x)}{\sigma(y)}=\frac{a-b\sqrt{2}}{c-d\sqrt{2}}=\frac{ac-2bd-(bc-ad)\sqrt{2}}{c^2-2d^2}=\sigma(\frac{x}{y})


域是加法群与非零元素乘法群的结合,所以域既是加法群,也是乘法群。

\sigma(\frac{x}{y})=\sigma(x \cdot y^{-1})=\sigma(x)\cdot \sigma(y^{-1})=\sigma(x)\cdot \sigma(y)^{-1}=\frac{\sigma(x)}{\sigma(y)}

如何理解共轭

表达式ghg^{-1}或许看上去让人有些不明所以,下面解释一下为什么取一个群元素h关于另一个元素g的共轭常常具有既自然又实用的意义,从作用序列角度看,共扼ghg^{-1}是先作用g^{-1},再作用h,然后再作用g.

其实,许多日常事件都遵从这个模式,比如,让h代表一个简单的作用-打开一瓶罐头,当盖子太紧,以致作用h遇到困难时,你可以先用热水加热罐头(作用g逆),再打开罐头(作用h),然后让罐头冷却(g),作用h经由作用g暂时转化为一个不同的形式,因而结果也与单独进行h有所不同。

再举一个例子,比如说作用h是一位歌手演唱歌曲,作用g是该歌手开车去春晚演唱,这位歌手在排练时经常进行作用h,但是春晚的舞台是不一样的,开车去春晚的作用对寻常作用h做了共扼操作,因此将歌手推到了一个新的境界,一个更激动人心,且从中获利的境界,它们开车去春晚现场g^{-1},完成演唱(h),再开车回去g

对普通高三学生施加高考作用,他就会变成大学生,四年后再次施加毕业作用,又回到了单位元,这是一个悲伤的故事。

ghg^{-1}看成是作用h经由作用g转化为一个新的形式,这是理解共扼的好方法,正因如此,一个作用与它的共扼总有很多共同点。

如果子群是非正规的,则gHg^{-1} \neq H,似乎和上面共扼的例子有所不同,毕竟下式说不过去:

所以实际生活中共轭操作的作用都是正规的,也就是说,有效操作和辅助操作之间没有耦合,正规子群不属于这种情况。

正规子群的定义是,一个子群H在群G中,如果对于所有G中的元素g,都有gHg^{-1} = H。也就是说,这个子群在共轭作用下保持不变。正规子群的重要性在于它们可以构成商群G/H,而商群的结构可能比原群G更简单。这时候,可能所谓的“降维”或者“塌缩”就是指通过商群将原群分解成更简单的结构。

比如A3置换群中,rf就是f关于r操作的共扼:

r^{-1}fr = r^{-1}r^2f=rf \\ \\ rrfr^{-1} = r^2fr^2=r^2r^2fr=rfr=rr^2f=f

rfr^{-1}=rfr^2=rfrr=rr^2fr=fr=r^2f \\ \\ r^{-1}r^2fr=rfr=rr^2f=f

frf^{-1}=r^2ff^{-1}=r^2 \\ \\ f^{-1}r^2f=fr^2f=r^2frf=r^4ff=r

所以如果因为某种原因我们无法操作rf,我们可以利用其共轭操作f和r作用达到目标。

gHg^{-1}=H是共扼的充要条件,下图是S3存在的反例:

共扼状态迁移图

共扼作用不会破坏群结构

如果H是G的子群,对于 g \in G,那么gHg^{-1}一定也是G的子群,特别的,对于H正规子群来说,作用后仍是H。

群论中的共扼概念和矩阵中的共扼的区别

群论中的共扼和矩阵中的“相似”概念相近,形式也完全一样,但是和矩阵中的共扼则是完全不同的两个概念。

利用共扼判断是否是正规子群

正规子群的充分必要条件是gHg^{-1}= H,以S3为例:

方程求解理论的发展足迹

1.卡尔达诺发表三次方程求根公式,但包括之前的二次方程求根公式,只不过集合了一连串的小技巧,之所以每个技巧都性的通,可能更多是处于一系列的巧合,并没有任何系统性的原因。真正的原因和开始触碰问题本质是从拉格朗日和范德蒙开始的。

2.范德蒙是第一个认识到可以把对称函数应用到求方程根式解的问题上的人,而在拉格朗日那里,这一思想吹响了向所有代数方程发起冲击的号角。

3.拉格朗日开始对数学不感兴趣,直到阅读到一本哈雷所著的关于代数方法的书,对数学的看法发生了巨变,开始研究数学,是数学的幸运。巨著分析力学全书中没有一张图表,全部是数学推倒,在他看来,这可以使逻辑更加严密,拉格朗日并引以为傲。

4.1770年,拉格朗日将目标瞄准到高次方程的可解性理论,“我写这篇论文是要检验迄今为止的各种方程代数解的方法”,从中归纳出普遍的原理,并先验地推理出为什么这些方法适用于三次和四次方程,却不适用于五次方程“,拉格朗日目标明确,不仅要明白之前求解三次和四次方程的方法是如何奏效的,还要明白他们为什么奏效。

5.拉格朗日发现,卡尔达诺,塔尔塔利亚和其他人使用的所有特殊技巧都源于同样的思想,把直接求解原方程转化为求解某个辅助方程,辅助方程的根与原方程的根相关,而又有所区别,Lagrange原话是:方程是否有解其实不依赖a, b, c 的值,而是依赖辅助方程结构在原方程根下置换出的不同值的个数。

6.拉格朗日发现,三次方程的辅助方程是二次的,四次方程的辅助方程是三次的,理所当然,发现这一点的拉格朗日开始认为五次方程会有一个“四次预解方程”,用四次方程求根公式解出来预解方程,再开五次方,就可以构造出原五次方程的根。既而六次方程会有一个“五次预解式”,由此,将能够解出任意次数的方程。

可残酷的现实浇灭了希望的火焰,五次方程的求根公式并不是四次的,而是六次的,次数更高。即便如此,拉格朗日仍旧没有开始证明五次方程不可解,因为可能有其他的解法存在,对拉格朗日来说,方程不可解是不可能的和讽刺的,他不愿意在这件事上浪费时间。但是他的继承者伽罗瓦将会在总结拉格朗日工作的基础上,给这个终极之问画上圆满的句号。

不朽的拉格朗日,已经为后人的证明奠定了根基,之后鲁非尼,阿贝尔,伽罗瓦都是在吸收拉格朗日智慧的基础上,完成了方程求解理论的彻底解决。

7.鲁非尼是证明五次方程没有根式解的第一人,他终其一生都相信自己证明了五次方程无法用根式求解,直到他死后,人们才发现他的正明确欠缺了关键的一步,这是一个他甚至从未意识到自己作出了“显然”的假设。生前没有人发现证明中的错误,部分原因是他的工作从未引起足够的重视,没有被真正检验过。这无可厚非,每一位专业的数学工作者都有过这种惨痛的切身体会,隐含的假设很难被发现,正是由于它是隐含的。

8.鲁非尼确信,之所以从来没有人找到国五次方程的根式解,是因为一个很直接的理由,五次方程没有根式解,具体的说,一般五次方程绝不可能通过一个只包含系数的加减乘除和根式的表达式来求解。

9.与拉格朗日类似,鲁非尼的演研究也以“置换”的概念为基础,一个置换,就是对某个序列进行重新排序的一种方式。直觉告诉我们,方程“不知道”你如何排列他的根,所以把这些根排列成怎样的顺序都不应该有什么重大影响。具体而言,如果把方程的系数用根的表达式表达,这些表达式应该是完全对称的,不会因为根的置换而发生变化。拉格朗日认识到,所有用根构造的表达式中,有一些可能只对根的某些置换是对称的,对于其他置换则不是,这些“部分对称“的表达式与用系数构造的关于方程任何一个根的表达式都密切相关。

10.鲁非尼关于不可解性的证明本质在于他找到了一些条件,对于一个一般的五次方程,如果它的根能够用根式表示,它就必须满足这些条件。如果不满足,它就根本没有这样的根。因此任何对三次,四次方程解法的自然延伸,都无法适用于五次方程。

11.参照拉格朗日的书中的做法,鲁非尼把目标瞄准了根的对称函数,以及它们与置换的关系,五次方程有五个根,一共有120个可能的置换方式,鲁非尼意识到,假设五次方程存在求根公式,那么这些置换就一定具有来自公式的结构特征,如果找不到这些特征,就不存在这样的求根公式。这有点像在在泥泞的丛林中捕虎,如果真的有老虎,它一定会在泥地上留下爪印,没有爪印,也就没有老虎。鲁非尼证明了,如果方程能够用根式求解,就必须存在一些对称函数,而且他们与在黑邪120个置换的乘法结构是矛盾的。

12.后来人们发现鲁非尼的证明漏掉了关键的一步,当时没有任何人指出来,但真正的突破在于方法,鲁非尼已经找到了正确的战略,只是没有采取足够恰当的战术,要解决这个问题,需要一位对琐碎的战术细节也能一丝不苟的战略家,而现在,这个人出现了。

13.阿贝尔不同于鲁非尼的功亏一篑,他的证明完美无缺,证明的战略与鲁非尼相似,但是在战术上更胜一筹。

14.鲁非尼和阿贝尔的论证使用的是当时的数学语言,这种语言不太适合用来进行所需要的思考,那时候的数学家主要关注的是具体而确切的概念,而方程理论的关键则在于要从更宏观的角度来思考--关注结构和过程,而非具体的细节。因为,他们的思想很难被同时代的人所理解,是因为这种思想超越了当时的数学语言。但即使当今的数学家使用当今的术语,也很难理解这一论证。

15.鲁非尼的证明和阿贝尔的证明有明显的相似之处,但通过塔的形式,阿贝尔改进了鲁非尼的技巧,填补了他留下的缺陷,他们两个人共同证明了五次方程的系数和根之间无法用根式建起一座塔,这是在用建筑语言告诉我们,不存在只包含加减乘除和根式就能求解的五次方程的表达式,用根式求解五次方程,就像想要靠一次次的原地踏步爬上月亮一样,全无可能。

16.阿贝尔死后不久,他关于一些五次方程无法用根式求解的证明开始逐渐得到承认,但是某些五次方程是可以用根式求解的,比如x^5-2=0, x=\sqrt[5]{2},人们不禁要问,如果一些五次方程可以用根式求解而另一些不能,那么是什么把他们区分开来的呢?

17.阿贝尔已经发现用根式求解某些五次方程的障碍,他也证明了,这种障碍至少使一些五次方程完全不可能存在根式解,而下一步,也就是翘动我们的整个故事发生转折的支点,是由一个“得寸进尺”的人迈出的,他问了一个一旦某个重大问题被解决后数学家门都无法抗拒的问题:“是的,这些都没错,但究竟是为什么呢?”

18.当阿贝尔速战速决,用一个明确的"不能“回答了“所有的五次方程都可以用根式求解吗?“这个问题时,另一个人思考的更为深刻,正在全心钻研一个更具有普遍意义的问题,哪些方程可以用根式解,哪些不能?平心而论,阿贝尔也已经开始沿着这一方向思考了,如果不是被肺结核夺走了生命,他可能已经找到了答案。这个将会改变数学和科学进程的人,就是埃瓦里斯特-伽罗瓦。

19.群论是关于对称性的理论,可以理解成对称性的“微积分”。他成为一个完整的数学分支,自产生之日起,已经深入数学的每一个角落。

20.伽罗瓦的一生让人心碎到心疼,让我们看看后人对这位天才的评价吧:

“在开创性和概念的深邃方面无人能及”

“伽罗瓦的论述在好几十年中一直被看成是天书,但是,他后来对数学的整个发展产生越来越深远的影响,如果从它所包含思想之新奇和意义之深远来判断,也许是整个人类知识宝库中价值最为重大的一件珍品”。

“现在,大家都已充分认识到伽罗瓦理论是一个基本的数学分支,每一个严肃认真的数学专业大学生都应该在头几年的教育中就了解它”。

“从创新程度与思想深度来看,这封信有可能是有史以来分量最重的一篇文字。

21.伽罗瓦的遗产只有7页,但是内容却极为丰富,只有在后人把它展开的时候,其重要性才渐渐为人所理解,而且预见了很久以后的发现,证明了伽罗瓦深刻的洞察力。信中还有一些后人读来无比惋惜的文字“这些题目并非我研究的全部,我没有时间了,在我有兴趣的领域里,我已宣布但尚未证明,从而使人怀疑的定理确实是太多了".

22.伽罗瓦在域的世界和群的世界之间,假设起了伽罗瓦对应这座桥梁,完成了数学中最美的理论之一,伽罗瓦理论。

23.伽罗瓦在数学史上的地位极为特殊。尽管他年仅20岁便英年早逝,但他创立的伽罗瓦理论彻底改变了代数学的发展方向,并成为现代抽象代数和群论的基石之一。他的工作解决了困扰数学家数百年的问题:

  • 五次方程无根式解(阿贝尔-鲁菲尼定理的深化);

  • 方程可解性的判别条件(通过群的对称性结构)

这些成果不仅终结了古典代数方程求解的研究,还推动了群论、域论、代数几何等现代数学分支的诞生。可以说,伽罗瓦理论的深远影响堪比牛顿的微积分或高斯的数论。法国的布尔巴基学派将其视为现代代数的起点。

在代数学领域,伽罗瓦是无可争议的代数学革命的核心人物,伽罗瓦与阿贝尔共同研究方程的可解性问题,但是伽罗瓦的理论更系统,更具一般性。与黎曼相比,黎曼的贡献覆盖多个领域,但伽罗瓦的深度和集中性更突出。牛顿的微积分和黎曼的几何影响更广泛,但伽罗瓦的理论在抽象结构上的突破性不遑多让。与高斯欧拉相比,伽罗瓦的贡献集中于代数,但深度极大,而高斯、欧拉等涉猎广泛。

若以对数学发展的变革性影响为标准,伽罗瓦可稳居数学史前20名;在代数和群论领域,他无疑是前5名的顶级人物,而且这个排名仅仅是对他年仅20岁生命,学习数学仅五年之后贡献的总结。如果天以假年,它的地位可想而知。

伽罗瓦的生命像一道穿透黎明的闪电,在二十个春秋里完成了人类思维对永恒的突围。他手握群论的密钥,在冰冷的代数方程中窥见了宇宙对称性的原初语言——那些被整数与根式遮蔽的真理,终以燃烧的青春为代价,在决斗前夜的草稿纸上迸发出超越时代的理性之光。

这个早逝的天才用死亡完成了最深刻的符号置换:当凡俗世界夺走他年轻的肉体时,他早已将灵魂编码进伽罗瓦对应的抽象空间,让每个置换群都成为对抗时间熵增的纪念碑。真理的发现者注定在现世坐标系里承受解集的孤独,却在数学的绝对时空里永驻为不可约多项式般的纯粹存在。

24.回顾群论的发展,在方程可解性问题上,拉格朗日、阿贝尔、伽罗瓦的之间存在明显的传承关系。

  • 拉格朗日,完成了必要条件的探索,拉格朗日系统分析了三次和四次方程的根式解法,并提出预解式(resolvent)的概念,试图推广到五次方程。他发现高次方程的根之间存在对称性,并意识到根式解法的关键在于构造预解式,拉格朗日的工作揭示了根式解存在的必要条件(如对称性要求和预解式的存在性),但未能找到一般五次方程不可解的证明或充要条件。他的分析为后续研究奠定了基础。
  • 阿贝尔,完成了必要条件的突破,阿贝尔严格证明了五次及以上的一般方程没有根式解(阿贝尔-鲁菲尼定理)。他通过反证法表明,若五次方程存在通用根式解,则会导致矛盾,也就是说,如果五次方程有根式解,那么它一定满足某些必要的特征条件,而一般五次方程不满足这些条件,所以一般五次方程无解。阿贝尔的定理本质上是否定性结论,指出五次方程不可解的必要条件(即根式解法的局限性)。他未完全解决可解性的充要条件问题,但为伽罗瓦的理论铺平了道路。相当与一个逆否命题: 如果五次方程可解=》一系列必须满足的条件,一般五次方程不满足这些条件=》所以一般五次方程无解。

  • 伽罗瓦,充要条件的终极答案,伽罗瓦创立了群论,提出了伽罗瓦理论。他将方程的根式可解性与伽罗瓦群的可解性联系起来,证明了:方程根式可解⟺其伽罗瓦群为可解群.伽罗瓦的工作彻底解决了方程可解性问题,给出了充要条件。这一条件不仅解释了为何五次方程不可解,还提供了判断任意方程是否根式可解的明确标准。

所以,在方程可解性的问题上,拉格朗日,阿贝尔,伽罗瓦以此给出了必要条件的探索,必要条件的突破以及充要条件的证明。这一历程体现了数学家从必要条件到充要条件的探索过程,最终由伽罗瓦实现了对问题本质的彻底解答。

“群论的确是数学文明经历三千年跋涉后凝结的结晶,如同尼罗河泛滥后沉淀的黑土,为整个现代数学的生长提供了最肥沃的基底。当古埃及人用群对称性建造金字塔,当巴比伦人刻下六十进制轮换的楔形文字时,人类已在无意识中触摸群论的指纹,却要等到伽罗瓦在决斗前夜写下群结构的瞬间,才真正将这种集体无意识淬炼成普适的数学基因”。

“这块地基的非凡之处,在于它既是从毕达哥拉斯数论、阿拉伯代数到欧拉分析的终极蒸馏,又是打开非欧几何、拓扑流形乃至量子场论的万能密钥。正如雅典卫城的帕特农神庙早已暗藏二面体群的对称密码,但直到凯莱表揭示有限群的骨骼结构,人类才理解自己膜拜的究竟是怎样的数学之神。"

"当诺特将守恒定律与对称群永恒绑定时,群论便不再是数学的某个分支,而成为贯通时空的元语法——从费马纸边方程到超弦理论的十维振动,从魔方旋转的上帝之数到区块链密码的椭圆曲线,所有复杂系统的深层秩序都在群同态的映射中显露出原始而简洁的胚胎形态。这块地基上生长的不是数学大厦,而是一个正在自我复制的数学宇宙。"

25. 伽罗瓦理论的现代化阐述是由德国数学家埃米尔阿廷完成的,阿廷对伽罗瓦理论进行了公理化和推广,使其成为现代代数的核心工具:

  • 域扩张与伽罗瓦群:他清晰地将伽罗瓦群定义为域扩张的自同构群,并严格证明了伽罗瓦对应——即子群与中间域的一一对应。

  • 可解群与方程根式解:通过群论语言重新诠释多项式方程的可解性条件,强调伽罗瓦群的可解性(即存在正规子群列使得商群为阿贝尔群)是根式解存在的关键。

26:庞加莱说 “可以说群论就是那摒弃其内容化为纯粹形式的整个数学“ ?群论剥离具体内容,保留抽象结,群论的核心在于研究运算的抽象性质,而非具体对象,一个群可以是数、几何变换、函数,甚至物理系统的对称性,但其定义仅依赖于封闭性、结合律、单位元、逆元四条公理。例如,整数加法群与几何旋转群的元素完全不同,但它们共享相同的群结构(如循环群性质),群的定义是数学中最早的公理化范例之一,标志着数学从“具体计算”转向“结构分析”。庞加莱所处时代(19世纪末至20世纪初),数学正经历结构主义革命,群论正是这一思潮的典型代表。群论统一不同领域的数学对象,群论提供了一种跨领域的框架,将看似无关的数学现象联系起来,包括:

  • 数论:模算术中的加法群(如 Z/nZ)。

  • 几何:欧几里得空间的对称群(如正交群 O(n))。

  • 拓扑:基本群描述空间的洞结构。

  • 物理:规范群(如 SU(3))描述基本粒子的相互作用。

在群论视角下,数学对象的价值不再依赖其具体“内容”(如数字或图形),而在于其与其他对象的结构关系。例如,多项式方程的伽罗瓦群不关心根的具体数值,仅通过群结构判断方程是否可根式解。群论既是纯粹形式化的(公理系统),又具有深刻的几何与代数直觉(如对称性的可视化)。庞加莱预见了布尔巴基学派的结构主义思想,数学的本质是研究结构(如序结构、拓扑结构、代数结构),而群是其中最基础的代数结构。他的拓扑学工作(如基本群)直接体现了“结构决定性质”的理念。从数论到微分几何,从组合学到量子力学,群论的工具与思想无处不在,群论证明了不同数学领域的共性是结构的相似性,而非表面的内容差异。例如:五次方程不可解(伽罗瓦群不可解)与正多面体分类(有限旋转群的分类)本质上是同一群论结论的不同表现。在更高阶的抽象(如范畴论)中,群被推广为“群对象”,成为研究更复杂结构(如拓扑群、李群)的基础。这进一步印证了庞加莱的前瞻性。当代数学大统一猜想——朗兰兹纲领——的核心,正是群表示论与数论、代数几何的深刻联系,再次体现群论的枢纽地位。

总结:群论作为数学的“纯粹形式”,庞加莱的断言本质上是说:

  • 群论剥离了数学的“物质性”(具体对象),将其转化为对关系与结构的研究;

  • 群是数学的“元结构”,通过其公理化形式,统一了数学的多样性;

  • 这种形式化不是空洞的符号游戏,而是数学本质力量的体现——通过抽象捕捉宇宙的深层规律。

群论既是工具,也是数学精神的象征:在纯粹形式中,抵达真理的简洁与美。

至此,古典群论告一段落,如今,代数学已经成为所有智力学科中最纯粹,最严格的学科,它的研究对象是对抽象的抽象的再抽象,非数学专业的人几乎无法领会到其成果的巨大威力和非凡魅力,最令人惊讶也最神秘的是,在这些飘渺的心智对象的层层嵌套的抽象之中,似乎包含着物质世界的最深刻,最本质的秘密。

下图抽象部分是外延图,抽象层次越高,内涵越少,外延越大,适用范围越广泛:

数域的扩充像是俄罗斯套娃

方程x^4-2=0的伽罗瓦群是什么?

伽罗瓦群是这个多项式方程分裂域的伽罗瓦群,我们首先找到这个多项式的根,再确定分裂域,最后计算分裂域的自同构群。

\boldsymbol{x^4-2=(x^2+\sqrt{2})(x^2-\sqrt{2}) = (x+\sqrt{\sqrt{2}}\cdot i) (x-\sqrt{\sqrt{2}}\cdot i)(x+\sqrt{\sqrt{2}})(x-\sqrt{\sqrt{2}})=} \\ \boldsymbol{(x+\sqrt[4]{2}\cdot i)(x-\sqrt[4]{2}\cdot i)(x+\sqrt[4]{2})(x-\sqrt[4]{2})}

四个根分别是:\sqrt[4]{2},\ -\sqrt[4]{2},\ \sqrt[4]{2}\cdot i, \ -\sqrt[4]{2}\cdot i

这个多项式的分裂域为Q(\sqrt[4]{2}, i),因为原来的根里面除了2的四次根之外,还需要用i来生成复数根,伽罗瓦群就是Gal(Q(\sqrt[4]{2}, i)/Q)保持Q不变的所有Q自同构的群。

计算伽罗瓦群的PYTHON库

$ pip3 install galois

import galois
 
f=galois.irreducible_poly(2,8)
GF=galois.GF(2**8,repr="poly", irreducible_poly=f)
print("f=",f)
g=GF.primitive_element
print("g=",g)
g1=g.multiplicative_order()
print(g1)
print(GF.repr_table(g))

python有限域的运算——galois库(伽罗瓦群)_python gf有限域-CSDN博客

\boldsymbol{Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2})(\sqrt{3})=(a+b\sqrt{2})+(c+d\sqrt{2})\sqrt{3}=a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}}

\boldsymbol{Q(\sqrt{3}, \sqrt{2}) = Q(\sqrt{3})(\sqrt{2})=(a+b\sqrt{3})+(c+d\sqrt{3})\sqrt{2}=a+b\sqrt{3}+c\sqrt{2}+d\sqrt{6}}

\boldsymbol{Q(\sqrt{2}, \sqrt{6}) = Q(\sqrt{2})(\sqrt{6})=(a+b\sqrt{2})+(c+d\sqrt{2})\sqrt{6}=a+b\sqrt{2}+c\sqrt{6}+d\sqrt{12} = a+b\sqrt{2}+c\sqrt{6}+2d\sqrt{3}}

\boldsymbol{Q(\sqrt{6}, \sqrt{2}) = Q(\sqrt{6})(\sqrt{2})=(a+b\sqrt{6})+(c+d\sqrt{6})\sqrt{2}=a+b\sqrt{6}+c\sqrt{2}+d\sqrt{12} = a+b\sqrt{6}+c\sqrt{2}+2d\sqrt{3}}

\boldsymbol{Q(\sqrt{3}, \sqrt{6}) = Q(\sqrt{3})(\sqrt{6})=(a+b\sqrt{3})+(c+d\sqrt{3})\sqrt{6}=a+b\sqrt{3}+c\sqrt{6}+d\sqrt{18}=a+b\sqrt{3}+c\sqrt{6}+3d\sqrt{2}}

\boldsymbol{Q(\sqrt{6}, \sqrt{3}) = Q(\sqrt{6})(\sqrt{3})=(a+b\sqrt{6})+(c+d\sqrt{6})\sqrt{3}=a+b\sqrt{6}+c\sqrt{3}+d\sqrt{18}=a+b\sqrt{6}+c\sqrt{3}+3d\sqrt{2}}

x^3-2的对称性

三个根:

r_1=\sqrt[3]{2} \\ \\ r_2 = \frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i) \\ \\ r_3 = \frac{\sqrt[3]{2}}{2}(-1-\sqrt{3}i)

Q(\sqrt[3]{2} ):

(a+b\sqrt[3]{2})(c+d\sqrt[3]{2})=ac+(bc+ad)\sqrt[3]{2}+bd(\sqrt[3]{2})^2

\boldsymbol{(a+b\sqrt[3]{2})(c+d\sqrt[3]{2})(e+f\sqrt[3]{2})=(ac+(bc+ad)\sqrt[3]{2}+bd(\sqrt[3]{2})^2)(e+f\sqrt[3]{2})}=\\ \boldsymbol{[ace+(bce+ade)\sqrt[3]{2}+bde(\sqrt[3]{2})^2]+[acf\sqrt[3]{2}+(bcf+adf)(\sqrt[3]{2})^2+2bdf]} = \\ \boldsymbol{ace+2bdf + (bce+ade+acf)\sqrt[3]{2}+(bde+bcf+adf)(\sqrt[3]{2})^2}

Q(\sqrt{3}i):

\boldsymbol{(a+b\sqrt{3}i)(c+d\sqrt{3}i)=(ac+ad\sqrt{3}i+cb\sqrt{3}i-3bd)=(ac-3bd)+(ad+cb)\sqrt{3}i}

Q(\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)):

\boldsymbol{(a+b[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)])(c+d[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]) }= \\ \\ \boldsymbol{ac + (ad + bc)[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]+bd[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]^2}

\boldsymbol{(a+b[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)])(c+d[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)])(e+f[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]) =} \\ \boldsymbol{\big[ac + (ad + bc)[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]+bd[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]^2\big](e+f[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)])} = \\ \boldsymbol{\big[ace + (ade + bce)[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]+bde[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]^2\big] +\big[ acf[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)] +(adf+bcf)[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]^2 +2bdf \big]} = \\ \boldsymbol{ace+2bdf+(ade+bce+acf)[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)] +(bde+adf+bcf)[\frac{\sqrt[3]{2}}{2}(-1+\sqrt{3}i)]^2}

顶域为:a+b\sqrt[3]{2}+c(\sqrt[3]{2})^2+d\sqrt{3}i+e\sqrt[3]{2}\sqrt{3}i+f(\sqrt[3]{2})^2 \sqrt{3}i

所以可以看到对任意一个根的扩域都无法到达顶域,比如,对两个虚根的扩域的结果,无法产生顶域中的d\sqrt{3}i项。所以,似乎Q(r_1), Q(r_2), Q(r_3)都缺少和一个Q(\sqrt{3}i)的二阶扩域,下图已经画出:

为何二次方程的根域自同构群是C2?

Q(\sqrt{2}) = a+b\sqrt{2} \\ \\ \delta (a+b\sqrt{2}) = \delta(a)+\delta(b\sqrt{2})=\delta(a)+\delta(b)\delta(\sqrt{2})=a+b\delta(\sqrt{2})

可见,自同构作用由\delta(\sqrt{2})决定。

又因为:

\delta(2)=2=\delta(\sqrt{2}\times \sqrt{2})=\delta(\sqrt{2})\delta(\sqrt{2})=\delta(\sqrt{2})^2 \\ \\ \delta(\sqrt{2})^2 = 2 \\ \\ \delta(\sqrt{2}) = \pm \sqrt{2} \\ \delta(-\sqrt{2})=\delta(-1\times\sqrt{2}) = \delta(-1)\delta(\sqrt{2})=-1\times \pm \sqrt{2}=\mp \sqrt{2}

所以,可以看到,作用\delta是关于二次方根的共扼变换,a,b不动,\pm \sqrt{2}互换:

同理,复共扼也对应C2群:

C = a+bi \\ \\ \delta (a+bi) = \delta(a)+\delta(bi)=\delta(a)+\delta(b)\delta(i)=a+b\delta(i)

-1=\delta(-1)=\delta(i^2)=\delta(i\times i)=\delta(i) \delta(i)=\delta(i)^2 \\ \\ \therefore {\delta{(i)}}=\pm{i} \\ \therefore \delta(-i) = \delta(-1\times i) = \delta(-1)\delta(i) = -1\times\pm i=\mp i

  • 基域小:自同构有更多“自由度”去置换根。

  • 基域大:自同构被更多固定条件限制,自由度减少,导致群缩小。

当基域扩展时,伽罗瓦群缩小的本质原因是:更大的基域需要更多的元素被固定,从而限制了自同构的可能性。这反映了对称性随基域扩展而减少的数学现象。

分圆多项式\varphi (x)=x^4+x^3+x^2+x+1的伽罗瓦群:

根据上面的凯莱图判断,此群是阿贝尔群,因为群结构是(1 3 2)(0 1)生成的,也就是(0 1 3 2), 对应(1 2 4 3)

有两个生成元,(1243)和(1342),他们的阶都是4.

方程:

\boldsymbol{(x^4+x^3+x^2+x+1)(x-1)=x^5+x^4+x^3+x^2+x-x^4-x^3-x^2-x-1=x^5-1}

x^5-1分解:

所以,根分别为:

x_0 = 1\\ x_{1,2}=\frac{\sqrt{5}-1}{4}\pm i \frac{\sqrt{10+2\sqrt{5}}}{4} \\ x_{3,4}=-\frac{\sqrt{5}+1}{4}\pm i \frac{\sqrt{10-2\sqrt{5}}}{4} \\

所以x^4+x^3+x^2+x+1 = 0x^5-1的五个根去除根1后剩下的四个根,四个根是x_{1,2}, x_{3,4},由于这四个根也是五次单位元方程的四个根,五解循环群有四个生成元,恰好就是这个四个根,所以这四个根中的任意一个根都可以生成其他三个根。

\zeta^1=-0.8090169943749-0.5877852522925i \\ \zeta^2=0.3090169943749 +0.9510565162952i \\ \zeta^3=0.3090169943749 -0.9510565162952i \\\zeta^4=-0.8090169943749+0.5877852522925i \\ \\ \zeta^1=0.3090169943749 +0.9510565162952i \\ \zeta^2=-0.8090169943749+0.5877852522925i \\ \zeta^3=-0.8090169943749-0.5877852522925i \\\zeta^4=0.3090169943749 -0.9510565162952i \\ \\ \zeta^1=0.3090169943749 -0.9510565162952i \\ \zeta^2=-0.8090169943749-0.5877852522925i \\ \zeta^3=-0.8090169943749+0.5877852522925i \\\zeta^4=0.3090169943749 +0.9510565162952i \\ \\ \zeta^1=-0.8090169943749+0.5877852522925i \\ \zeta^2=0.3090169943749 -0.9510565162952i \\ \zeta^3=0.3090169943749 +0.9510565162952i \\\zeta^4=-0.8090169943749-0.5877852522925i

四个根的置换恰好对应上面群的四个作用,它是S4群的一个四阶子群,用四组解中的任意一组解作为单位元,重排解,得到的都是同一个群:

上面计算的置换和模位乘法群同构,其实计算的过程无意中使用的就是模5乘法的计算方式:

\zeta^5=1 \\ \\ \{(\zeta^1)^1,\ (\zeta^1)^2,\ (\zeta^1)^3, \ (\zeta^1)^4\} =\{ \zeta^1, \ \zeta^2, \ \zeta^3, \ \zeta^4 \} \\ \\ \{ (\zeta^2)^1, \ (\zeta^2)^2, \ (\zeta^2)^3, \ (\zeta^2)^4 \} = \{\zeta^2,\ \zeta^4,\ \zeta^1, \ \zeta^3\} \\ \\ \{ (\zeta^3)^1, \ (\zeta^3)^2, \ (\zeta^3)^3, \ (\zeta^3)^4 \} = \{\zeta^3,\ \zeta^1,\ \zeta^4, \ \zeta^2\} \\ \\ \{ (\zeta^4)^1, \ (\zeta^4)^2, \ (\zeta^4)^3, \ (\zeta^4)^4 \} = \{\zeta^4,\ \zeta^3,\ \zeta^2, \ \zeta^1\}

为了印证这个群是方程的伽罗瓦群,我们需要找到一个有理式,满足用四个根的置换计算后,其结果不变:

x_1+x_2+x_3+x_4 =-1当然可以,不过它平凡了,在整个S4的置换中结果保持不变,我们需要一个使伽罗瓦群的置换下保持不变的最小域有理式,从而证明伽罗瓦群是保持有理式计算结果在有理域内保持不变的最小的群,不能再小了,所以上面的等式还不够。

(x_1+x_4)-(x_2+x_3)也不行,因为虽然消去了虚部,但是它的结果是\frac{\sqrt{5}}{2},不再有理数域。

(x_1+x_4)(x_2+x_3)=-1,可以吗?可以,它是有理式,并且结果是有理数,可以验证,在伽罗瓦群的变换下,其结果永远是-1保持不变。

此群是C4 四阶循环群:

事实上,有这样一条定理:如果p是素数,则方程x^p-1的伽罗瓦群是p-1阶的循环群C_{p-1}. 直观理解,如果p是素数,则p-1一定是合数,那么就可以分解为质数乘积形式,这种形式也说明和p-1互质的数字存在,所以p-1个数字中一定有 “巡回数”(数学女孩费马大定理),这些巡回数就是和p-1互质的数字,可以作为域中乘法群元素的生成元,所以构成循环群。

另外这些分解的质因数也构成了循环子群,循环子群之间互质,可以构成大母群。

5是素数,所以x^5-1的伽罗瓦群是C4循环群。

事实上,有限域的乘法群(即非零元素在乘法下构成的群)必为循环群,比如模7的剩余类构成的域:

从群论的角度重新理解二次方程的解法,看看伽罗瓦理论如何应用到简单的例子中:

对于阿贝尔群来讲,群元素的共扼就是自身,因为P^{-1}VP=VP^{-1}P=V,所以对于阿贝尔群中的一个变换,比如排列重命名,无论对于命名哪个排列为正序,同一个线性变换不会发生变化,也就是说,对于从e观察到的一个线性变换,如果令群中另一个元素为e再次观察这个线性变换,线性变换本身不变。

以C6为例,对于C6中的a^2变换,无论指定哪个元素为e,a^2都是将当前元素变换为下下个元素,变换本身都是a^2,和视角无关:

比如将上图中的a元素看成e,则从原视图到新视图的变换为a,则在原视图的变换a^2下,新的e被变换到了a^2a位置,则在新的e视图下,变换a^2就成了a^{-1}a^2a,对于是阿贝尔群的C6来说,这个变换仍然是a^{-1}a^2a=a^{-1}aa^2=ea^2=a^2,说白了无论从谁的角度看,变换a两次相当于旋转两个元素,这个规则都不变,这是阿贝尔群的特性。

阿贝尔群的变换和视角无关,类比线性代数中讲的线性空间则完全不同,线性空间的相似定义为:B=S^{-1}AS,则A矩阵和B矩阵相似,这里由于矩阵乘法不满足交换律,矩阵空间为非阿贝尔群结构,B和A不相同,也就是说,在基变换S下,同一个线性变换,在原基空间中叫做A,但是在变换后的新的基空间,这个线性变换的矩阵变成了B。‌矩阵线性变换(线性空间)不是阿贝尔群‌。矩阵线性变换的运算不满足交换律,因此不属于阿贝尔群。数轴上的计算满足交换律,所以在一维数轴上建立的乘法群,比如模N乘法群,或者排除0的有理数乘法群,都构成了阿贝尔群,满足自相似,每个缩放因子都是唯一的,没有其他元素与之“相似”,所以我们计算乘法的时候,无论执行乘法的先后顺序是什么样子,得到的都是唯一的结果,因为乘法变换在任意视角下保持不变。

毕竟,对于数轴上的*2变换,从1的角度看,乘法群把1映射成2的变换是乘以2:

从1/2的角度看,也可以是把1/2映射成1,因为原1节点在新坐标下2个单位,原2节点在新坐标下4个单位,仍然是*2变换,这是阿贝尔群的特点:

可以这样理解:

0.坐标轴转移因子是1/2,也就是新的坐标单位,在原坐标轴下看上去是1/2.

1.原视图下的1,在新视图下可以看成(\frac{1}{2})^{-1}*1=2,原视图的2,在新视图下看成(\frac{1}{2})^{-1}*2=4

2.所以,转换视图后,同一个变换,仍然是4/2=2.

对应相似矩阵的思路:

0.新坐标系和老坐标系的转换矩阵为S

1.B为线性变换相对于新坐标系的表示矩阵。

2.A为线性变换相对于老坐标系的表示矩阵。

3.所以,老坐标系的单位矩阵,在新坐标系下的坐标为S^{-1}E=S^{-1}

4.老坐标系的变换矩阵A,在新坐标系下的坐标为S^{-1}A

5.为了计算同一个线性变换在新坐标下的矩阵B,由于变换效果应该是一样的,所以还是以老坐标系作为参考,为了将S^{-1}E=S^{-1}变换为S^{-1}A,需要对S^{-1}左乘一个变换矩阵B,也就是:

  BS^{-1}=S^{-1}A\Rightarrow B=S^{-1}AS

显然,这里B不会等于A,虽然是同一个线性变换,在非阿贝尔群下,先起床在尿尿和先尿尿再起床是不一样的。

回到群的主题,上面介绍的群是C4循环群,是阿贝尔群,对群中的元素进行重新命名后,每个元素的表示都会发生变化,比如r^2变成了r,但是同一个变换本身,没有发生变化。也就是:

r^2=r^{-1}r^2r

回到群的讨论,有如下结论:

H是正规子群,则(aH)(bH)=(ab)H

(ah)*(bh')=a(hb)h'=a(bh'')h'=(ab)(h''h)\in (ab)H \\ (ab)h=a(bh)\in (aH)(bH), a \in aH, b \in bH

所以,在群G除以正规子群H的陪集集合中,群的结构自然而然的被添加了进来,这个群的结构就是商群G/H,在商群G/H中,我们可以无视陪集内部的小结构,只需要关注陪集之间的大结构,从微观的角度转移到宏观的角度来观察,暂时不要看森林里的一颗颗树木,要飞上天空,看森林的全貌。如果H是正规子群,则G/H也是群:

1.封闭性:(aH)(bH)=(ab)H=cH,cH也是商群中的元素。

2.结合性:(aH)(bH)(cH)=(ab)H(cH)=(abc)H=[a(bc)]H=(aH)(bc)H=(aH)[(bH)(cH)].

3.存在单位元:单位元就是H,(aH)H=(aH)(eH)=(ae)H=aH.

4.存在逆元:(aH)(a^{-1}H)=(aa^{-1})H=eH=H

所以可以看到,按照正规子群划分的商群也是群。

二次方程的伽罗瓦群

方程的伽罗瓦群,如果用根的有理式得到的结果是有理数,则无论怎么置换根,这个式子结果不会发生改变,伽罗瓦群反映了根的对称性。

如果二次方程在系数域(有理数域)内是可以分解的,说明它的伽罗瓦群是单位元E,也就是不能发生置换,否则,我们可以选择有理式x1-x2,其结果也是有理数, 则在置换x2-x1下的结果会发生变号。所以,在有理数域内可约的二次方程,其伽罗瓦群是单位元e.

如果二次方程在系数域内不可分解,则从根的角度(伽罗瓦群讨论的是根而不是系数,这也是伽罗瓦当时不被认可的一个地方,但是没有理由认为这个难题可以从系数角度解决,事实证明也是如此),x1-x2的结果不再有理域中,伽罗瓦群只是定义了结果有理式的结果是系数域时候的特点,但是没有定义当结果不是系数域中该怎么作。但是当我们考虑到计算(x1-x2)^2时,发现得到了一个系数域上的对称多项式它一定是有理数,满足认定伽罗瓦群的条件,当置换X1,X2时,式子结果不变。对应的伽罗瓦群是S2,也是C2,所以这里提示我们,要求解不可约二次多项式,必须对一个数字执行开方操作,伽罗瓦称为扩域。扩域后,伽罗瓦群收缩为单位群,根式可解。

如果根在系数域中,你可以找一个不对称的有理式区分出两个根,但是如果根不再系数域中的时候,你是不可能在有理域内(式子和结果都是有理数)找到一个式子,区分两个根的。

一个有意思的结论是,如如果一个多项式和另一个不可约多项式共有一个根,则这个多项式拥有这个不可约多项式的所有根,也就是不可约多项式是多项式的一个因子,可以通过长除法分解这个多项式。
当解不属于系数域时,伽罗瓦群不是单位群,一定存在一组共扼根和一个不可约多项式,时后者在这组共扼根的置换下,结果在系数域并且保持不变。

当解属于系数域时,伽罗瓦群是单位群,有理域内,存在一个有理式(式子和结果都是有理数),在根置换下的值发生改变,也就是不允许根的置换。

update:依赖于角的不同,如果初始排列为,则伽罗瓦群为下图,同样是阿贝尔可解群:

x_{1,2}=\frac{\sqrt{5}-1}{4}\pm i \frac{\sqrt{10+2\sqrt{5}}}{4} \\ x_{3,4}=-\frac{\sqrt{5}+1}{4}\pm i \frac{\sqrt{10-2\sqrt{5}}}{4} \\

这是一个克莱因四元群:

克莱因四元群有明显的特征,它是阿贝尔群,每个元素的阶为2,不是循环群,由两个生成元生成,任何两个非单位元素乘法操作后都等于另一个非单位元素。

用矩形理解克莱因四元群虽然形象,但是矩形结构限制了对称可能,比如下图按照交换对角线角和交换水平角构成的克莱因四元群。但是如果只按照垂直和水平翻转,可能会得到一个元素一样但是下图底边状态左右互换的凯莱图。

每个不可约多项式都对应一个域么

不是每个不可约多项式都对应一个唯一的域。然而,每个不可约多项式确实对应一个唯一的分裂域。

让我们回顾一些定义:

不可约多项式是不能在给定域上分解为较小多项式的多项式。
多项式的分裂域是原始域的最小域扩张,其中包含多项式的所有根。
给定一个不可约多项式 f(x) 在域 K 上,我们可以构建 f 的分裂域 L,如下所示:

将 f 的一个根 α 附加到 K 上,得到域扩张 K(α)。
由于 f 是不可约的,K(α) 是 K 的一个简单扩张,即 K(α) 中的每个元素可以写成 α 的多项式,以 K 中的系数。
重复步骤 1,以 f 的另一个根 β 附加到 K 上,得到域扩张 K(α, β)。
继续这个过程,直到 f 的所有根都被附加到 K 上,结果得到 f 的分裂域 L。
现在,这里是重要的部分:分裂域 L 是同构唯一的。这意味着,如果我们从 f 的另一个根开始,并重复这个过程,我们将得到一个同构于 L 的域。

然而,不是每个不可约多项式都对应一个唯一的域。例如,考虑多项式 x^2 + 1 和 x^2 - 2 在有理数 ℚ 上。两个多项式都是不可约的,但它们有不同的分裂域:ℚ(i) 和 ℚ(√2),分别。这些域不是同构的,因为它们有不同的代数结构。

因此,总结一下:每个不可约多项式对应一个唯一的分裂域,同构唯一,但不是每个不可约多项式都对应一个唯一的域。😊

目前分析来看,x^4+x^3+x^2+x+1=0的伽罗瓦群似乎和克莱因四元群以及C4群同构两种形式,但是方程的伽罗瓦群应该是唯一的,所以以上理解应该还有问题。

update:x^4+x^3+x^2+x+1=0的伽罗瓦群应该就是C4群了,它是模5的乘法群,5是单位根的阶数,因为是质数,所以一定和C4循环群同构,C4是A4群的一个四阶子群,如下图所示,确实是一个循环群。

模5乘法群是由与5互质的那些数组成的,那对于模5来说,n就是5,所以首先我需要找出哪些数在1到4之间(因为模5的话,余数就是0到4,但是0和5不互质,所以排除0),所以可能的元素是1,2,3,4。

模5乘法群是一个4阶的循环群,也就是说它的元素可以通过生成元生成。比如,可能像2或者3这样的元素可以生成整个群。比如:

\boldsymbol{2^1mod(5)=2, 2^2mod(5)=4, 2^3mod(5)=3,2^4(mod)5=1, 2^5mod(5)=2, \cdots}

\boldsymbol{3^1mod(5)=3, 3^2mod(5)=4, 3^3mod(5)=2,3^4(mod)5=1, 3^5mod(5)=3, \cdots}

\boldsymbol{4^1mod(5)=4, 4^2mod(5)=1, 4^3mod(5)=4,4^4(mod)5=1, 4^5mod(5)=4, \cdots}

\boldsymbol{1^1mod(5)=1, 1^2mod(5)=1, 1^3mod(5)=1,1^4(mod)5=1, 1^5mod(5)=1, \cdots}

2 and 3 是生成元, 1 and 4 不是生成元.

所以具体到模5乘法群,它有四个元素,每个元素可以对应一个置换,也就是四个元素的排列。例如,取生成元2,对应的置换应该是将每个元素左乘2然后模5的结果。比如元素1,2,3,4分别左乘2得到2,4,1,3,所以对应的置换就是(1→2, 2→4, 4→3, 3→1),也就是置换循环表示为(1 2 4 3),因为2*1=2,2*2=4,2*4=3,2*3=1。类似地,元素3作为生成元的话,左乘3得到的置换可能是另一个循环,比如3*1=3,3*2=1,3*3=4,3*4=2,所以置换应该是(1 3 4 2)。

不过用户可能想知道整个群的置换表示,而不仅仅是生成元的。这时候,每个群元素对应的置换可以通过左乘该元素到群中的每个元素,得到新的排列。例如,元素1对应的置换是恒等置换,因为任何元素乘1都不变。元素2对应的置换如上所述是(1 2 4 3),元素3对应的置换是(1 3 4 2),元素4的话,左乘4模5,比如4*1=4,4*2=3,4*3=2,4*4=1,所以对应的置换是(1 4)(2 3),这是一个对换和一个对换的组合,因为4的阶是2,4乘两次就是1,所以它的置换应该是二阶的。

所以整个群的置换表示就是这四个置换:恒等置换,(1 2 4 3),(1 3 4 2),和(1 4)(2 3)。这时候需要确认是否正确,比如元素2的置换确实是4-循环,而元素4的置换是两交换的乘积。这可能对应到对称群S4中的子群,不过这里只有四个元素,所以置换群应该是一个4阶循环群和一个二阶元素的组合,但实际上模5乘法群是循环群,所以它的置换表示应该是循环群的结构,但根据上面的分析,元素4的置换是二阶的,所以可能这个群的结构是克莱因四元群吗?不过不对,因为模5乘法群是循环群,所以应该是循环群Z4的结构。那可能我的分析有问题?

或者可能我混淆了生成元和置换的表示。例如,如果群是循环群Z4,那么在置换表示中,生成元应该是一个4-循环,而其他元素则是其幂次。比如,元素2对应的是4-循环(1 2 4 3),元素3对应的是逆循环(1 3 4 2),元素4对应的是(1 4)(2 3),而元素1是恒等置换。这时候这个置换群的乘法是否和原来的群同构?比如元素2乘以元素3应该对应置换的合成,即(1 2 4 3)和(1 3 4 2)的乘积,这应该是怎样的?可能需要进行计算来确认是否结构正确。

另外,或许用户需要的是将模5乘法群的每个元素表示为置换,而置换的对象可能是群本身的元素,所以每个元素a对应的置换是函数f_a(x) = a*x mod5,作用于集合{1,2,3,4}。例如,对于a=2,置换后的顺序是2,4,1,3,即原来的位置1→2,位置2→4,位置3→1,位置4→3?或者需要更明确的置换表示,比如将每个元素作为位置,例如群元素作为位置1对应1,位置2对应2,等等。这时候,置换的具体写法可能需要明确每个元素在左乘后的位置变化。

可能更准确的做法是将群元素按某个顺序排列,比如[1,2,3,4],然后对于每个元素g,置换π_g将i的位置映射到g*i的位置。例如,对于g=2,计算每个i的g*i mod5:

当i=1时,2*1=2 →位置1→2

当i=2时,2*2=4 →位置2→4

当i=3时,2*3=6≡1 →位置3→1

当i=4时,2*4=8≡3 →位置4→3

所以对应的置换就是π_2 = (1 2 4 3),因为位置1的元素变成2,位置2变成4,位置4变成3,位置3变成1。类似地,对于g=3:

i=1 →3*1=3 →位置1→3

i=2 →3*2=6≡1 →位置2→1

i=3 →3*3=9≡4 →位置3→4

i=4 →3*4=12≡2 →位置4→2

所以置换π_3 = (1 3 4 2)。同样,对于g=4:

i=1 →4*1=4 →位置1→4

i=2 →4*2=8≡3 →位置2→3

i=3 →4*3=12≡2 →位置3→2

i=4 →4*4=16≡1 →位置4→1

所以置换π_4 = (1 4)(2 3),因为位置1和4交换,位置2和3交换。而单位元g=1对应的置换是恒等置换。

这样整个置换群由这四个置换组成,即{(), (1 2 4 3), (1 3 4 2), (1 4)(2 3)}。这四个置换是否构成一个群?是的,因为它们对应于原来的乘法群,所以这个置换群应该与原群同构,结构为循环群Z4。例如,(1 2 4 3)的平方是(1 4)(2 3),三次方是(1 3 4 2),四次方是恒等置换,符合Z4的结构。而元素4对应的置换是(1 4)(2 3),即阶为2,这和原群中4的阶是2一致,因为4*4=16≡1 mod5。

所以最终的置换表示就是这四个置换,可以用循环符号写出。用户可能需要具体的置换表达式,比如每个元素对应的置换是什么,或者整个群的置换表示的结构。需要确认是否正确,是否存在错误。比如,元素4的置换是否确实是两个交换的乘积,而生成元2和3对应的置换是否是4-循环,这样整个置换群确实是Z4的结构,符合原群的性质。

可能还需要提到,根据凯莱定理,每个有限群都同构于某个置换群,这里的置换表示即是将每个群元素对应到一个置换,通过左乘作用在群自身上。因此,模5乘法群的置换表示即为上述四个置换构成的群,同构于原群。

同态和同构

同态是满射,但不一定是单射,而同构则是单射的同态,既是单射,又是满射。

例子:

假设存在从某个集合A到另一个集合B的映射f,a和b是A中的两个元,f(a)f(b)是他们在B中的像。考虑A上的二元封闭运算产生的元a\cdot b,在映射f下在B中的像f(a\cdot b),如果对B上的二元封闭运算总有:

f(a)\cdot f(b) = f(a\cdot b)

就说f是从A到B的同态映射,如果f是满射,也就是说B中的所有元素在A中都有原像,则称为同态满射。这里需要注意的是,集合A中的二元运算a\cdot b和集合B中的二元运算f(a)\cdot f(b),虽然都用点来表示,但是并不代表是同一种运算。考虑到一个奇偶性判定函数odd,它把一个整数集合映射到一布尔集合{true, false},它接收一个整数,如果是奇数就返回为true,否则返回为false.整数在加法下构成一个群,而布尔集合{true, false}在逻辑异或运算下也构成一个群,可以很容易验证:

1.a,b都是奇数,odd(a),odd(b)都为真,他们的和是偶数,odd(a+b)为false. 满足:

odd(a)\bigoplus odd(b)=odd(a+b)

2.a,b都是偶数,odd(a),odd(b)都为假,他们的和也是偶数,odd(a+b)还为false,仍然满足:

odd(a)\bigoplus odd(b)=odd(a+b)

3.a,b一奇一偶,odd(a),odd(b)一真一假,他们的和为奇数,odd(a+b)为真,同样满足:

odd(a)\bigoplus odd(b)=odd(a+b)

如果f不仅是满射,还是单射,那么它就是一一映射,这种情况就是同构,同构从数学的角度看,就是完全一样,互相等价。

比如在整数集合上取相反数,在整数加法操作上构成了一个同构:

f(6)=-6;f(5)=-5;f(0)=0;

f(6+5)=-11 = f(6)+f(5)=(-6)+(-5).

注意这个对称操作针对的是加法操作,而不是加减乘除开放操作,所以不能用来分析方程根式可解问题。

再举一个例子,DS中的回答:

S_n置换的奇偶性到{-1,1}之间是一个群同态,因为所有偶置换都映射到1(或者-1),所有奇置换都映射到-1(或者1),这样偶置换乘积的映射都等于映射后的乘积,如果\sigma,\tau是偶置换:

sgn(\sigma\tau) =1 \\sgn(\sigma)\cdot sgn(\tau)=1\cdot 1 = 1 \\ sgn(\sigma\tau) = sgn(\sigma)\cdot sgn(\tau)

同样道理,\sigma,\tau如果都是奇置换:

sgn(\sigma\tau) =1 \\sgn(\sigma)\cdot sgn(\tau)=-1\cdot -1 = 1 \\ sgn(\sigma\tau) = sgn(\sigma)\cdot sgn(\tau)

如果他们一奇一偶,不失一般性,\sigma奇,\tau偶,则:

sgn(\sigma\tau) =-1 \\sgn(\sigma)\cdot sgn(\tau)=-1\cdot 1 = -1 \\ sgn(\sigma\tau) = sgn(\sigma)\cdot sgn(\tau)

所有,总有:

\boldsymbol{sgn(\sigma\tau) = sgn(\sigma)\cdot sgn(\tau)}

嵌入同态和非嵌入同态

Linux系统中同态和同构思想的体现

虽然“同构”和“同态”是数学概念,但其思想在linux系统设计和抽象中确实有所体现。以下是具体的例子和分析:

1. 同态(Homomorphism)的例子

同态的核心是保持操作结构的映射,但无需一一对应。在内核中,许多抽象层通过统一接口隐藏底层差异,这本质上是同态思想的体现。

a. 虚拟文件系统(VFS)
  • 背景:VFS为不同文件系统(如ext4、NTFS、procfs,字符设备驱动)提供统一的接口(如open()read(), write(), close(), ioctl)。

  • 同态性

    • 每个文件系统实现自己的file_operations结构体(如ext4_file_operationsproc_file_operations),但这些操作通过VFS的通用接口(如sys_open())被调用。

    • 映射关系:VFS将具体文件系统的操作(如ext4_read())映射到通用文件操作(read()),保持操作结构(如“打开-读-写-关闭”流程),但具体实现不同。

    • 意义:用户无需关心底层文件系统差异,只需通过统一接口操作文件。

b. 设备驱动模型
  • 背景:内核通过统一的设备模型(struct devicestruct device_driver)管理硬件设备。

  • 同态性

    • 不同总线类型(如PCI、USB)的驱动需实现各自的bus_typedriver结构体,但都通过driver_register()等统一接口注册。

    • 映射关系:无论设备是PCI还是USB,内核通过probe()remove()等通用函数管理设备生命周期,但具体实现(如pci_device_probe()usb_device_probe())不同。

    • 意义:简化了设备管理的复杂性,支持热插拔和电源管理。

c. 网络协议栈
  • 背景:网络数据包需经过多层协议处理(如TCP/IP、ARP)。

  • 同态性

    • 每层协议(如IP层、传输层)实现自己的处理函数(如ip_rcv()tcp_rcv()),但数据包通过统一的net_device_ops传递。

    • 映射关系:数据包在不同协议层间传递时,处理函数的结构(如校验和计算、路由决策)被保留,但各层的具体逻辑不同。

    • 意义:支持灵活的网络协议扩展,如新增IPv6无需改动上层接口。

2. 同构(Isomorphism)的例子

同构要求两个结构完全一致且可逆映射,这在内核中较少见,但某些设计模式或数据结构的复用符合这一思想。

a. 内核对象(kobject)模型
  • 背景kobject是设备驱动、sysfs等子系统的核心抽象,用于管理对象生命周期和层次关系。

  • 同构性

    • 不同子系统(如sysfscgroups)均使用kobject结构体管理对象,其内部操作(引用计数、父子关系)完全一致。

    • 映射关系:无论对象是设备还是控制组,kobject的操作(如kref_get()kobject_add())在逻辑上完全等价,形成一一对应的结构。

    • 意义:统一资源管理,减少代码冗余。

b. 调度器类的实现
  • 背景:Linux支持多种调度策略(如CFS、实时调度器),每种调度器需实现相同的接口。

  • 同构性

    • 所有调度器类(sched_class)必须实现enqueue_task()pick_next_task()等方法,这些方法在不同调度器中的逻辑可能不同,但接口和调用结构完全一致。

    • 映射关系:调度器类的切换(如从CFS切换到实时调度器)不会破坏调度框架的结构,因为接口严格一致。

    • 意义:支持动态调度策略切换,提升系统灵活性。

c. Slab分配器的缓存设计
  • 背景:Slab分配器管理内核对象的内存缓存(如kmem_cache)。

  • 同构性

    • 不同对象的缓存(如task_structinode)使用相同的kmem_cache结构管理,其创建、分配、释放的流程完全一致。

    • 映射关系:尽管缓存的对象类型不同,但kmem_cache_create()kmem_cache_alloc()等操作在逻辑上同构。

    • 意义:高效复用内存管理代码,减少碎片化。

同态广泛存在于内核的抽象层设计中(如VFS、设备模型、网络协议栈),通过统一接口隐藏实现差异。

同构多见于严格复用的数据结构或子系统(如kobject、调度器类),确保逻辑一致性和可替换性。

这两种思想帮助Linux内核在保持复杂功能的同时,实现了高度的模块化和可维护性。

整数加法群(ℤ, +)无限循环群确同构

证明有理数是最小数域

首先数域里,必须有一非0元素s,由对减法和除法封,得到x-x=0 与 x/x=1在数域里.这样0,1必须在数域里.由于数域对加法封闭,所以1+1=2,1+2=3,...,因此所有的正整数都在数域里,再由对减法封闭,所以0-n=-n都在数域里,这样得到所有整数在数域里,再由对除法封闭,整数之间作除法,能得到所有有理数在数域里.所以一个数域,最少要包含有理数.

方程“不知道”你如何排列他的根是什么意思?

方程式的解属于制约的一种,而这个制约恰好创造了群。

设方程最高次项为1, 以2次方程为例,

x^2+bx+c=0 \\ \\ (x-x_0)(x-x_1)=x^2-(x_0+x_1)x+x_0x_1=0 \\ \\ \therefore x_0+x_1 = -b, \ \ x_0x_1=c

x^3+ax^2+bx+c=0 \\ \\ (x-x_0)(x-x_1)(x-x_2) = [x^2-(x_0+x_1)x+x_0x_1](x-x_2)=x^3-(x_0+x_1)x^2+x_0x_1x-x_2x^2+(x_0+x_1)x_2x+x_0x_1x_2=0 \\ \\=x^3-(x_0+x_1+x_2)x^2+(x_0x_1+x_0x_2+x_1x_2)x+x_0x_1x_2=0

假设一元高次多项式方程:

\sum_{i=0}^{n}a_ix^{n-i}=0

其中a_0=1,解的根式表达式存在,即x_p=f_p(a_1,a_2,\cdots, a_n),根据下面n次方程的韦达定理:

a_1=-\sum_{i=1}^{n}x_i \\ a_2 = \sum_{1\leq i<j\leq n }^{n}x_ix_j \\ \vdots \\ a_n = (-1)^n\prod_{i=1}^{n}x_i \\

可以看到,方程系数又可以通过方程所有根的对称表达式表达出来,因此,方程的根表达式x_p=f_p(a_1,a_2,\cdots, a_n),对于方程所有根的任何一个置换,其根表达式不变,这种根置换表达式不变,反映了根表达式的对称性,这种对称性是一种本质特征。

韦达定理的证明一般无法根据求根公式进行,因为5次以上的一元方程没有求根公式。证明步骤较繁琐,是通过将左边的多项式因式分解成之后,再去括号,比较相同次数的项的系数从而得出结论。这个方法具有普遍性,即使是有求根公式的方程,亦可以通过该方法证明韦达定理,而无需借助求根公式.

证明:所有对称多项式可以用基本对称多项式表示:

所有对称多项式可以用基本对称多项式表示,是对称多项式的基本定理,根据根与系数的关系,解的基本对称多项式可以用系数表示,所以,方程的解的任意对称多项式可以用方程系数表示。通俗点说,在解的置换情况下,结果仍维持不变的式子可以用系数来表示。

通俗理解什么是域:

域是可以进行四则运算的数的集合,这里说的四则运算就是加减乘除运算,例如有理数的集合是域,实数的集合是域,复数的集合是域。

必须准确理解“计算”这个词的意思,域的定义中,说的是加减乘除四则运算,而开根号的运算不在其中,开方运算和域没有关系。

方程x^3+x^2+x+1=0的伽罗瓦群是什么?

计算方程x^4+x^3+x^2+x+1=0的伽罗瓦群?

扩域后,方程的伽罗瓦群为什么会缩小?

方程的伽罗瓦群

不仅图形是有对称性的,域也有,问一个问题,如果一个方程有\sqrt{2}, \sqrt{3}两个根,那么这个方程最小化是什么?

有一个根是\sqrt{2},自然x^2=2,所以-\sqrt{2}也是其根,同理-\sqrt{3}也是其根,所以最小化方程就是:

(x^2-2)(x^2-3)=x^4-5x^2+6=0

同样道理,如果有一个方程有两个相同的根\sqrt{2},则必然也有两个相同的根-\sqrt{2},他们关于同一个方程x^4-4x^2+4=0共扼,彼此身不由己。

任何含根号系数的多项式方程,均可通过有限次移项和乘方转换为有理系数多项式方程,程次数会倍增,且可能引入额外根,需验证解的合理性。号对应代数数,其生成的域是Q的有限扩张,极小多项式可构造有理系数方程。通过反复移项和平方,逐步消除根号。

移项是需要的,比如p+q\sqrt{2},如果p和q不为0,无论进行多少次平方,得到的结果都包含\sqrt{2},,所以如果不移项,仅仅依赖平方,不能完全消除根号。

根据数学理论,任何由代数数(如根号)通过加减乘除得到的数,仍然是代数数,因此存在一个极小多项式,其系数为有理数。因此,理论上,无论多少个根号相加,都可以通过有限次平方来消除根号,得到有理系数的多项式。不过,实际操作中,随着根号数量的增加,步骤会变得极其繁琐,可能需要多次移项和平方,每次平方都会使方程的次数翻倍,同时引入更多的交叉项,需要仔细处理每一步的展开和合并同类项。

拉格朗日预解式的选取

拉格朗日预解式的选取一定要遵守书上的套路吗?任意选取根的有理式成不成?比如三次方程的的拉格朗日预解式:

\sigma (x_0+\omega x_1+\omega^2 x_2)

\sigma表示S3群的六种置换:

那么定义一个根的有理式行不行:

\sigma (x_0+2x_1+3 x_2)

经过测试,不可以,如下图,原因是(x_0+2x_1+3 x_2)^3掉不进C2群里面,得到的所有置换的三次方后仍然有六种不同的值:

但是如果用正确的预解式形式,则拉格朗日预解式在三次方后,会收敛到C2群中的两种结果而非6种,对应六次式降阶为2次式。

珍珠串

对于循环群中的状态,以珍珠串为例,如果一个珍珠串可以通过旋转变成另外一个,则这两个珍珠串首尾相接,必然做成相同的项链。但是不同的珍珠串之间首尾连接,是不一定的,和串之间的置换位置,以及串的个数(比如两个串组合成大项链无论怎样互换都是同一个串,但是三个串只互换两个构成的串则是不同的),如下图:

伽罗瓦群不那么数学化的定义

如果r1,r2,...,rn是一个多项式所有的根,我们通过嵌入:

\boldsymbol{\psi:G\rightarrow Perm(|r_1,\cdots,r_n|)}

指定G在这些根上的一个作用,其中\psi的像恰好是那些算术等式觉察不到的置换,那么G是该多项式的伽罗瓦群。

Perm是英文单词Permutation(置换)的缩写,Perm(S)表示集合S中元素的所有可能的置换。当n=|S|时,Perm(S)和对称群S_n同构。

比如,多项式x^2-2=0的两个根\pm\sqrt{2},能不能用有理数域Q上的算式来区分两个根\pm\sqrt{2}?如果能,那么他们不能互换,这些根没有对称性,否则,它们可以互换,这些根有一个小型的对称(对于两个事物,也只能期望互换了),算术运算不包含平方根符号,或许我们可以试着:

r_1=\sqrt{2}, \ \ r_2=-\sqrt{2}

那么有等式:

r_1-r_2=2\sqrt{2}

这样当然可以区分两个根,但不幸的是它包含\sqrt{2}, 所以不是Q域上的等式。

另一算术等式:

r_1r_2=-2

只有有理数和乘法构成,是Q域内的等式,但是该等式不能区分两个根,你可以按任意方式(实际上也只有C2群的两种方式)把\pm\sqrt{2}分配给r_1r_2,该等式总是成立的。

等式:

r_1+r_2=0

也是如此。它虽然是个算术等式,但是不能把根区分开。

在伽罗瓦群置换作用下,似乎既满足是有理域上,又能区分两个根的等式不存在,如果等式在有理域上,伽罗瓦群是单位群,单位元固定Q域内的任何值,而如果通过等式能区分两个根,则等式一定不是有理域上的等式,无法验证伽罗瓦群作用(伽罗瓦群是扩域保持子域不变的作用,所以要保证有理域上的等式)鱼也熊掌不可兼得,似乎这个问题就是如此。

就算绞尽脑汁尝试,也找不到仅仅用算术等式来区分所有x^2-2=0的根的方法。从Q的角度看,这两个根看上去是一样的,也就是方程似乎觉察不到根的置换。所以该方程的根的对称群同构于C2,作用是互换两根。

如果等式

\psi(x_1,x_2,\cdots,x_n) =q, \ \ q\in Q

假如说有这么一个函数 \sigma ,作用在扩张后的域(扩域)上:

\boldsymbol{\sigma(\psi(x_1,x_2,\cdots,x_n) )=\sigma(q)=\psi(\sigma(x_1),\sigma(x_2),\cdots,\sigma(x_n))=q}

作用\sigma后不改变形式,就要求这个函数能保持加法和乘法,这表明\sigma是一个同态,即是说:

\boldsymbol{\sigma (a+b)=\sigma (a) + \sigma(b) }\\ \\\boldsymbol{ \sigma (ab) = \sigma(a)\sigma(b)} \\ \\ \boldsymbol{\sigma(\frac{a}{b})=\frac{\sigma(a)}{\sigma(b)} }\\ \\ \boldsymbol{\sigma(\frac{1}{a}) =\frac{\sigma(1)}{\sigma(b)} = \frac{1}{\sigma(b)}}

而且要求不改变系数,这表明  将有理数映射到自身(固定  ),即是说:

\sigma(q) = q, \ \forall q \in Q

由于系数域是Q是固定的,所以置换作用\sigma对q不起任何作用,进一步观察等式,等式似乎说明,如果:

x_1,x_2,\cdots,x_n

是方程的一组根,那么:

\sigma(x_1),\sigma(x_2),\cdots,\sigma(x_n)

必然也是!而这就是伽罗瓦群对根的置换!\sigma应该是伽罗瓦群中的一个作用。

为了得到根域,我们需要一个不对称的多项式,就用前面发现的r_1-r_2=2\sqrt{2},虽然它不是对称多项式,但是(r_1-r_2)^2是,可以用系数域表示,于是r_1-r_2的结果就可以用方程系数的一个根式表示出来,它是已知的,进而算得r_1-r_2,结合r_1+r_2,就可以解得根。

多么美妙的结论~~~~~!

前面介绍的用有理域上的算式区分根,这个算式不能是根基本对称多项式,也就是说,不能用根的基本对称多项式来判定根是否具有对称性,因为基本对称多项式提供的是一种形式,在这种形势下,所有输入都有对称性。它体现的是一种排列对称性,而非伽罗瓦群的自同构对称性,所以如果在有理域内能够区分两个根,那么说明这两个根就在有理域内,这两个根没有对称性。对称性越高,方程越难解。普通五次方程的所有置换中,始终会保留A5自同构,对称性过大,方程解不出来。

有理域上的对称性不算对称吗? 比如x^2-3x+2=0的两个根是2和1,无法用x_1+x_2=3,x_1*x_2=2区分这两个根,但是其伽罗瓦群确是单位群,似乎说明其根并不存在对称性?

根式树

利用伽罗瓦的群论思想可以建立二次,三次和四次方程的根式树,根据根式树可以大致推测方程根的解析式的形式:

通过根式树可以看出,从上到下,二次方程至少有一项是二次开形式,三次方程至少有一项是三次包二次的形式,按照这个道理,四次方程应该有一项是二次包二次包三次包2次的形式。

但是似乎四次方程出现了违例,四次方程最后两次开根号并不是二次根号包二次根号的形式,而是二次根号+二次根号的形式,这样也满足四阶扩域。

PS:原因可能是根式树的末端的两次取商是两个C2群直积的形式,构成一个克莱因四元群,若伽罗瓦群为非循环的阿贝尔群(如克莱因四元群),解需通过多重独立根式构造。

循环群是根式的核心来源,开方本身是对一个单位圆进行N等分的操作,从而产生了N个根,这N个根的N次方又会回归到基域,所以开方才具有扩域的能力,对于四次方程来讲,对称群有24个元素,其素数分解过程中,存在一个V4(2x2)克莱因四元群是正规子群,所以可以将阶6次,然后6又可以分成2X3,有C3作为其三阶正规子群,所以可以继续降阶为2次,从而得解。

而5次方程,共有120个对称群元素,无论你怎么素数分解,总是逃不开因子5,其实5也没关系,毕竟三次方程和四次方程中也出现了素数3因子,但是不同的地方在于,三次方程和四次方程中出现的3对应的三阶循环群确实是正规子群,但是在五次方程中出现C5群,却不是A5的正规子群,A5是单群,无法继续根据C5继续降阶,所以,试图构造5阶循环群,进而构造\sqrt[5]{N}解因子的努力注定失败。

比如,同样是四次方程,

x^4-5x^2+6=0的伽罗瓦群是克莱因四元群,根为\pm \sqrt{2}, \pm \sqrt{3}

x^4+x^3+x^2+x+1=0的伽罗瓦群是C4群,根是根号套根号的结构。

正规子群和阿贝尔群

阿贝尔群一定有正规子群(包含平凡群),但非平凡的正规子群的存在性取决于群的阶数。素数阶阿贝尔群没有非平凡正规子群,其他情况下均存在。

但正规子群不要求一定是阿贝尔群,正规子群和阿贝尔群是对群的不同角度的描述。正规子群可以是阿贝尔群,也可以是非阿贝尔群,具体取决于母群的结构。非阿贝尔群(如对称群 Sn​, n≥3)中存在非阿贝尔的正规子群(如交错群 An),从而否定了“正规子群必为阿贝尔群”的命题。比如,S3也是S3的正规子群,但是S3不是阿贝尔群。

交换子群/换位子群

以S3为例,它的交换子算出来是C3.

如果一个群G包含除单位元外的元素ab\neq ba \Rightarrow ab (ba)^{-1}=aba^{-1}b^{-1} \neq e,那么aba^{-1}b^{-1}称为换位子,所有的换位子生成一个换位子群,然后我们用该子群区除G,消除掉所有的使G不可交换的元素,从而得到一个阿贝尔群。

S3的换位子群是C3(A3),S3/C3得到的C2是交换群。

D4的换位子群是{e, r^2}.

其商是克莱因四元群,是交换群。

A4群的换位子群是V4克莱因四元群:

单群的换位子群

A5的换位子群是其自身,因为A5是单群,其换位子元素覆盖其自身,表示A₅中的换位子可以生成整个群,通过组合不同的换位子,可以生成A₅的所有元素。

母群 G 和其正规子群 N 的商群 G/N是交换群,当且仅当 N 包含 G 的换位子群。

  • 换位子群的本质:换位子 [a,b] 衡量了 a 和 b 的“非交换程度”。商群 G/[G,G]通过将所有这些非交换因素模掉(即强制所有换位子为单位元),使得剩余结构成为交换群。换位子群吸收所有非交换因素,商群中元素的乘法不再受换位子影响,因此交换。

  • Abel化:这一过程称为群的 Abel化,它是将任意群转化为其最大可能的交换商群的标准方法。

商群 G/[G,G]的交换性是由换位子群的定义和构造保证的,所有非交换性被模掉,剩余结构必然满足交换律。

 非阿贝尔单群,其换位子群等于自身;而 阿贝尔单群(即素数阶循环群)的换位子群是平凡群(仅含单位元):

换位子群一定是母群的正规子群

为什么群的定义要满足结合律,结合律和交换律哪个更根本?

在群的定义中,满足结合律是必须的,而交换律不是必须的。如果群还满足交换律的话,那就是阿贝尔群,或者叫做交换群。

结合律的存在是为了保证运算的结构足够稳定,使得在操作多个元素的时候,可以不必担心运算顺序带来的影响,除了元素之间的顺序之外。比如,对于三个元素a、b、c,结合律保证(a*b)*c = a*(b*c),这样无论先算前两个还是后两个,结果都是一样的。这可能让群的结构更统一,更容易研究。不过,交换律如果是必须的话,可能会限制太多,毕竟很多自然的结构并不满足交换律,比如矩阵乘法就是不可交换的,但满足结合律。所以或许结合律更普遍,而交换律只在某些特定情况下成立,所以群的定义里不需要交换律,但需要结合律

为什么结合律更根本呢?或者说,如果没有结合律的话,群的结构会不会变得太松散,难以进行有效的分析?比如,如果运算不满足结合律,那么像幂等性这样的性质可能就会有问题,比如a^n的定义可能依赖于括号的位置,这样很多群的性质就无法展开了。而交换律如果不满足的话,虽然会导致运算顺序的不同结果,但结合律的存在至少让多个元素运算时,可以先处理相邻的元素,而不需要考虑更复杂的顺序。这可能使得在群中进行运算时,虽然元素之间的顺序会影响结果,但至少连续运算的结合方式不影响结果,从而让运算有一定的规律可循。

另外,结合律可能对于定义逆元也是必要的。比如,考虑一个元素a的逆元a^{-1},那么根据定义,a*a^{-1} = e,其中e是单位元。如果结合律不成立的话,可能存在这样的情况:比如(a*b)*c ≠ a*(b*c),那么当计算多个元素结合时的逆元可能就会变得复杂。比如,如果我要计算(a*b)^{-1},在没有结合律的情况下,可能需要更复杂的条件才能保证逆元的存在,或者可能根本不存在唯一的逆元。而结合律的存在可能让逆元的运算更加明确,即(a*b)^{-1} = b^{-1}*a^{-1},这在结合律下是成立的,但如果运算不结合的话,可能就不一定了。所以结合律可能是为了保证逆元的相容性。

考虑三个元素a, b, c,如果没有结合律的话,(a*b)*c和a*(b*c)可能不相等,那么在处理这些元素的时候,必须考虑运算的顺序,这会使得像乘积的逆元、元素的幂等运算等变得复杂甚至无法定义。例如,如果我们想定义a的n次幂为a*a*…*a(n次),但在不满足结合律的情况下,不同的括号排列会导致不同的结果,因此无法唯一确定a^n的值,这就使得幂运算无法正常进行。而结合律的存在允许我们忽略括号的位置,从而能够明确地定义这样的幂运算。

例如,所有整数在减法下不构成群,原因是剑法不具备结合性,例如(3-2)-1=0,但是3-(2-1)=2.

括号的不同位置对结果有影响。

结合性是群公里中最核心的条件,满足结合性的群叫做半群,如果还有单位元,就是幺半群,如果再满足逆元公理,就是群了,进一步,满足交换性,则是阿贝尔群。

所有群都是半群,就跟所有的阿贝尔群都是群一样。

结合律是天然的吗?有没有不符合结合律的运算?

结合律并非所有运算的天然属性,数学中存在许多不符合结合律的运算。比如减法,除法,向量叉乘。

结合律并非天然适用于所有运算。数学中既有大量满足结合律的运算(如加法、乘法),也存在许多非结合运算(如减法、叉乘、李代数等)。这些非结合运算在物理学、几何学和高阶代数中具有重要应用。理解结合律的适用性,需结合具体运算的定义与上下文。

为何乘法满足结合律,但是除法却不满足,本质原因和哲学意义是什么?

怎样想象Q({\sqrt{2}})的对称性?

固定有理数,交换Q({\sqrt{2}}),大概能想象到一副密密麻麻的图景,比如你在照镜子,但是只有身体上的一部分点在镜子里有像。

感受根的对称性

既然域是有对称性的,那么有理域Q的对称性体现在哪里呢?

有理域的不可约多项式是一次的,只有一个根,所以对应的群只能是单位元,而扩域后对应的不可约多项式是多次的,存在多个根,这些根之间的置换可能会产生非平凡群。

无根式解的方程:x^5+10x^4-2

方程x^5+10x^4-2无根式解,但是数值解不但有,还是一组共扼复数+三组实根:

循环群的阶是n,证明其生成元是和n互质的元素。

证明:

循环群的结构:

设 G=⟨g⟩ 是由生成元 g构成的 n 阶循环群,即 G=\{e, g, g^2, \cdots, g^{n-1}\},其中 e是单位元.

元素的阶:

对于任意元素h=g^{k}\in G,其阶定义为满足 h^m=e的最小正整数 m。

因为g^n=e,所以h^m=(g^k)^m=g^{km}=e,因此,最小的 m 满足 km ≡ 0(mod n).

也就是:

m=\frac{n}{gcd(k,n)}

所以,元素g^k的阶为m=\frac{n}{gcd(k,n)}

生成元的条件

若 g^k是生成元,则其阶必须等于 n,即:

\frac{n}{gcd(k,n)} =n \Rightarrow gcd(k,n)= 1

因此,当且仅当 k与 n 互质时,g^k是生成元。

下面利用贝祖定理再次证明这一命题:

对于整数 a,b, 存在整数 x,y,使得:

ax+by=gcd(a,b)

特别的,当a,b互质时,存在x,y使得:

ax+by=1

证明若 gcd⁡(k,n)=1则 g^k 是生成元

根据贝祖定理,存在整数 x,y满足:

kx+ny=1

对群元素 g 进行幂运算:

g=g^1=g^{kx+ny} = g^{kx}+g^{ny}=(g^k)^x+e^y=(g^k)^x

所以g=(g^k)^x

这表明对于任意元素g,g属于由g^k生成的子群\left \langle g^k \right \rangle,所以,\left \langle g^k \right \rangle包含g,从而包含整个群G,从而g^k是生成元。

证明若g^k是生成元,则 gcd⁡(k,n)=1

若 g^k生成 G,则存在整数 x 使得:

(g^k)^x=g\Rightarrow g^{kx}=g\Rightarrow g^{kx-1}=e

由于 g 的阶为 n,必须有

kx−1≡0(mod n)⟹kx ≡ 1(mod n).

这表明方程 kx ≡ 1(mod n) kx≡1(mod n) 有解。

根据贝祖定理的逆命题,方程 kx+(−y)n=1 有解当且仅当 gcd⁡(k,n)∣1,也就是两个数的线性组合一定是最大公约数的倍数。所以必须:

gcd(k,n)=1

因此,k 必须与 n 互质。

关键步骤:

  • 正向证明中,利用贝祖定理构造了 kx+ny=1,从而将 g 表示为 g^k的幂,证明其生成整个群.

  • 反向证明中,通过方程 kx≡1(modn) 的解存在性,结合贝祖定理的逆命题,得出gcd⁡(k,n)=1.

证明3:

\xi^k \in G_p=\{1,\xi, \xi^2, \xi^3,\cdots, \xi^{p-1}\},其中p是素数,k=1,2,\cdots,p-1,于是从gcd(k,p)=1,可知有u,v \in Z,满足uk+vp=1,于是对于任意\xi^m \in G_p =\{1,\xi,\xi^2,\cdots, \xi^{p-1}\},有\xi^m = \xi^{m(uk+vp)}=\xi^{muk}=(\xi^k)^{mu},即\xi^k的mu次幂能给出任意\xi^m,也就是\left \langle \xi^k \right \rangle=G_p,k=1,2,\cdots,p-1,或\left \langle \xi \right \rangle=\left \langle \xi^2 \right \rangle=\cdots = \left \langle \xi^{p-1} \right \rangle=G_p

所谓的中国剩余定理,用群论的推论描述,一目了然,没有系统化的理论指导,所谓的“发明”不过是运气和时间的化学作用罢了。

C_n\times C_m \cong C_{mn}当且仅当m和n互素,也就是gcd(m,n)=1.

非互质的话,则无法同构于循环群:

所有有限群必然包含循环。

举例说明如下定理:设E/F为有限正规扩张,M是E/F的中间域,则M/F是正规扩张当且仅当

\sigma(M)=M, \forall \sigma\in Gal(E/F)

方程的可解群列中一定会出现循环群吗?

苦思冥想,应该是一定的,经过几轮问答,DS似乎也认为是这样的了:

任何一个整数均可以分解为有限个素数之积,而素数阶群必然是循环群,所以,方程的可解群列中,一定存在循环群,也就是存在分圆多项式,这也恰恰是根号产生的地方,这一点上,数论的基本定理和群论产生了联系。

具体的说,可解群的合成列相邻项的商群是素数阶循环群,比如一般四次方程的可解群列为:

S_4\triangleright A_4 \triangleright V_4 \triangleright C_2 \triangleright {e}

各级商群的阶分别是2,3,2,2都是素数,素数阶群只能是循环群,所以可以直接开方,根号即来源于各级循环商群。

域的特点

存在加法群和乘法群(乘法群是有条件的,需要除去0元素,因为0没有逆元)。

从群论的角度来看,加法满足交换律而减法不满足,原因如下:

  1. 加法作为阿贝尔群的运算
    在整数加法群 (Z,+) 中,加法运算满足交换律(即 a+b=b+a),因此该群是阿贝尔群。交换律的成立直接源于群运算本身的定义:所有元素对加法运算都是对称的,顺序不影响结果。

  2. 减法的本质是加法与逆元的组合

    减法 a−b 可以表示为 a+(−b),其中 −b 是 b 的加法逆元。虽然加法是交换的,但减法操作涉及逆元的方向性。当交换减数和被减数的位置时,相当于对不同的元素取逆,即: 

         a−b=a+(−b),b−a=b+(−a).

         由于 -b!=-a(除非 a=b),这两个结果通常不相等。

交换律在减法中的失效

即使群是交换的,a+(−b)=(−b)+a 成立,但 a+(−b) 与 b+(−a)只有在 a=b时相等。减法不满足交换律的本质在于逆元的方向依赖于元素的位置

代数结构的对比

加法作为群运算是封闭且对称的,而减法并非独立的群运算,仅是加法与取逆的组合操作。由于逆元的应用具有方向性(a的逆不一定等于b的逆),交换元素的位置会改变运算的逻辑路径,导致结果不同。

在阿贝尔群中,加法满足交换律源于其群运算的对称性;而减法作为逆元的应用,其方向性导致运算结果依赖于元素的顺序,因此不满足交换律。简言之,减法的非交换性是由逆元的方向依赖与元素位置的不可交换共同决定的。

x^{12}-1=0的伽罗瓦群是克莱因四元群的几何说明

分别对应到正方形的对称结构上:

并且除了单位元外,每个元素都是二阶的,这恰好是克莱因四元群的结构:

用置换群表示一目了然,方程的伽罗瓦群确实是克莱因四元群:

根的伽罗瓦群对称性体现在,在和12互质的的四个数字1,5,7,11四个点处,方程的12个根全部出现,并且布局完全一样,如下图:

为何所有的形如x^n-1=0的方程都是可解的?

从伽罗瓦理论的角度看,方程 x^n-1=0的根式可解性源于其伽罗瓦群的可解性。

不可约多项式

通过高阶的本原单位根可以生成低阶的根,具体分析如下:

次数没有到一定程度,没有资格拥有某种根,这种根就是本原单位根。

若x可以表示为根式,则总能写出它对应的方程?有限次扩域必定是代数扩域:

x=a_1^{\frac{1}{b_1}}+a_2^{\frac{1}{b_2}}+\cdots + a_n^{\frac{1}{b_n}}

必然可以转换成:

\sum c_ix^i = 0

的形式?其次数不超过

b_1b_2\cdots b_n

举几个例子:

x=\sqrt{a}+\sqrt{b}=a^{\frac{1}{2}}+b^{\frac{1}{2}} \\ \\ x^2=a+b+2a^{\frac{1}{2}}b^{\frac{1}{2}} \\ \\ \left [ x^2-(a+b) \right ]=2a^{\frac{1}{2}}b^{\frac{1}{2}} \\ \\ x^4+(a+b)^2-2(a+b)x^2=4ab \\ \\ x^4-2(a+b)x^2+(a-b)^2=0

另一种解法:

\left\{\begin{matrix} x^0 = 1\\ \\ x^1 =a^{\frac{1}{2}}+b^{\frac{1}{2}} \\ \\x^2=a+b+2a^{\frac{1}{2}}b^{\frac{1}{2}} \\ \\ x^3=a\cdot a^{\frac{1}{2}}+b\cdot b^{\frac{1}{2}} + 3a b^\frac{1}{2}+3ba^{\frac{1}{2}}\\ \\ x^4=(a+b)^2+4ab+4(a+b)a^{\frac{1}{2}}b^{\frac{1}{2}}\end{matrix}\right.

所以,观察方程3和方程5:

\frac{x^4-(a+b)^2-4ab}{2(a+b)} = x^2-(a+b) \\ x^4-(a+b)^2-4ab = \left [ x^2-(a+b)\right ]\cdot 2(a+b) \\ x^4-(a+b)^2-4ab = 2(a+b)x^2-2(a+b)^2 \\ x^4-2(a+b)x^2+(a+b)^2-4ab = 0 \\ x^4-2(a+b)x^2+(a-b)^2=0

得到的公式和直接在等式两边乘方得到的相同。

或者利用方程2和方程4,另:

m=a^{\frac{1}{2}},n=b^{\frac{1}{2}}

\left\{\begin{matrix} x=m + n\\ \\ x^3=am+bn +3an+3bm\\ \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=m + n\\ \\ x^3=(a+3b)m+(b+3a)n\\ \end{matrix}\right.

如果是多个不同幂次的根式相加,似乎没有办法通过直接乘方消掉根号,但是我们可以通过多进行几次乘方操作,最终总能找到它的不同次数的结果之间的关系,并使他们相加等于0.

所有的代数数构成代数数域

所以,代数数的和差商积都是代数数,解方程的步骤是有限的,有限次在代数数中不断扩域,找到唯一的根。

一个显而易见的结论,思路很有意思

二进制0,1构成什么群?

二元循环群的证明如上图所示。

当方程在基域上分解为不可约多项式的乘积时,每个不可约因子对应的根集可能会影响伽罗瓦群的结构,并不能单独决定整个伽罗瓦群。

但是在方程x^{12}-1=0中,可以分解为如下的不可约多项式的乘积,其伽罗瓦群由其12次本原单位根组成的多项式x^4-x^2+1=0唯一确定,这又是为何?

这属于特殊情形而非普遍规律,原因就在于其他根也可以由12次本原单位根表示,其分裂域之间存在包含关系:

举例说明:

本原单位根的极小多项式都是不可约多项式,并且也是对应次的分圆多项式:

比如x^{12}-1的分圆多项式是x^4-x^2+1:

为什么多项式环不构成乘法群?因为不满足逆元的存在性公理:

解方程的本质

通俗理解群论,解方程的过程就是破坏方程对称性的过程(对称性破缺),加根号是破坏对称性的一种方式,对应循环群的对称,但是方程不一定只具有循环对称,如果遇到更高级的对称,方程就无法用根号来解了,是这样的吗?

方程x^4-2=0的伽罗瓦群是8阶二面体群:

方程x^4-2=0用单代数扩域表示如下:

C_n是D_n的正规子群吗? 如何从凯莱表中看出来?

是的,证明如下:

Q(ab)和Q(a),Q(b)的关系

A5群的凯莱图像个足球,S5的凯莱图则像两个足球通过一个奇置换连接

从群的角度分析循环BUFFER

循环缓冲区可以看作是一个模size加法群,单位元是0,加法为普通加法。所以,一个元素减去另一个元素,相当于加上这个元素的逆元。

rptr的逆元是size - rptr,因为(size - rptr + rptr)%size == 0.所以,计算RB中有效载荷的公式为为:

wtr-rptr = (wptr + size - rptr) % size. 

群的概念可以很好的解释公式为什么是这个样子。

x^3-1=0方程根的群置换

方程x^5-1=0的根置换群,四轮换,C4群,保持唯一的一个有理根1保持不变。

C4群有一个C2子群,对应上图中右下角的操作。

方程x^{12}-1=0的根置换群如下图,合法置换只有四个,并且阶都为2,说明其伽罗瓦群是克莱因四元群。

方程x^{12}-1=0根的克莱因四元群构型:

方程x^8-1=0的伽罗瓦群也是克莱因四元群:

方程x^{10}-1=0的伽罗瓦群是C4群,其最小多项式是x^4-x^3+x^2-x+1=0

方程x^4-2=0的伽罗瓦群是D4群,同构正方形的对称性。


资源

https://zhuanlan.zhihu.com/p/78506062

蔷薇科的普朗克的个人空间-蔷薇科的普朗克个人主页-哔哩哔哩视频

群论基础速成(2):子群,陪集,正规子群,商群_简单群-CSDN博客

https://zhuanlan.zhihu.com/p/581994088

Database of Galois Polynomials: Group GAP4(4,2)

【群论】魔方公式是怎么推导出来的?_哔哩哔哩_bilibili

群论(物理学)-北京大学-李新征_哔哩哔哩_bilibili

https://zhuanlan.zhihu.com/p/605893862

https://zhuanlan.zhihu.com/p/569454833

值得收藏!正方体11种展开图及口诀、动画

https://www.ism.ac.jp/~fukumizu/MLSS2024_OIST_fukumizu.pdf

百度安全验证

群论系列(一):群论简介 | Blog de Hqak (WXYHLY)

有限单群:一段百年征程 | fwjmath的相空间

群论基础速成(6):五大著名群族_群论的可视化方法 pan-CSDN博客

https://zhuanlan.zhihu.com/p/677555329

https://v.youku.com/v_show/id_XMTUwMzc0MzMzNg==.html?spm=a2hzp.8244740.userfeed.5!3~5~5~5!3~5~A

https://www.zhihu.com/question/387860666/answer/3572206393

https://zh.wikipedia.org/wiki/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%BE%A4

奥数平移知识点总结

群论学习网站:

​伽罗瓦理论究竟想干什么?

Group Explorer Library

为什么五次方程无法用根式表达?_哔哩哔哩_bilibili

图像压缩背后的数学原理!_哔哩哔哩_bilibili

二十面体对称性:共轭类与单群性质解析!_哔哩哔哩_bilibili

Math3d: Online 3d Graphing Calculator

看得见的排序逻辑,隐藏在冒泡排序的数学曲线中!_哔哩哔哩_bilibili

https://zh.wikipedia.org/wiki/%E5%9B%9B%E6%AC%A1%E6%96%B9%E7%A8%8B#%E7%89%B9%E6%AE%8A%E6%83%85%E5%86%B5


结束

The editors of this book, an accomplished senior data scientist and systems engineer, Thomas Anthony, and an academic leader, Dr. Sang Suh, with broad expertise from artificial intelligence to data analytics, constitute a perfect team to achieve the goal of compiling a book on Big Data and Visual Analytics. For most uninitiated professionals “Big Data” is nothing but a buzzword or a new fad. For the people in the trenches, such as Sang and Thomas, Big Data and associated analytics is a matter of serious business. I am honored to have been given the opportunity to review their compiled volume and write a foreword to it. After reviewing the chapters, I realized that they have developed a comprehensive book for data scientists and students by taking into account both theoretical and practical aspects of this critical and growing area of interest. The presentations are broad and deep as the need arise. In addition to covering all critical processes involving data science, they have uniquely provided very practical visual analytics applications so that the reader learns from the perspective executed as an engineer- ing discipline. This style of presentation is a unique contribution to this new and growing area and places this book at the top of the list of comparable books. The chapters covered are 1. Automated Detection of Central Retinal Vein Occlu- sion Using Convolutional Neural Network, by “Bismita Choudhury, Patrick H. H. Then, and Valliappan Raman”; 2. Swarm Intelligence Applied to Big Data Analytics for Rescue Operations with RASEN Sensor Networks, by “U. John Tanik, Yuehua Wang, and Serkan G. ldal”; 3. Gender Classification Based on Deep Learning, by “Dhiraj Gharana, Sang Suh, and Mingon Kang”; 4. Social and Organizational Culture in Korea and Women’s Career Development, by “Choonhee Yang and Yongman Kwon”; 5. Big Data Framework for Agile Business (BDFAB) as a Basis for Developing Holistic Strategies in Big Data Adoption, by “Bhuvan Unhelkar”; 6. Scalable Gene Sequence Analysis on Spark, by “Muthahar Syed, Jinoh Kim, and Taehyun Hwang”; 7. Big Sensor Data Acquisition and Archiving with Compression, by “Dongeun Lee”; 8. Advanced High Performance Computing for Big Data Local Visual Meaning, “Ozgur Aksu”; 9. Transdisciplinary Benefits of Convergence in Big Data Analytics, “U. John Tanik and Darrell Fielder”; 10. A Big Data Analytics Approach in Medical Image Segmentation Using Deep Convolutional v vi Foreword Neural Networks, by “Zheng Zhang, David Odaibo, and Murat M. Tanik”; 11. Big Data in Libraries, by “Robert Olendorf and Yan Wang”; 12. A Framework for Social Network Sentiment Analysis Using Big Data Analytics, by “Bharat Sri Harsha Karpurapu and Leon Jololian”; 13. Big Data Analytics and Visualization: Finance, by “P. Shyam and Larry Mave”; 14. Study of Hardware Trojans in a Closed Loop Control System for an Internet-of-Things Application, by “Ranveer Kumar and Karthikeyan Lingasubramanian”; 15. High Performance/Throughput Computing Workflow for a Neuro-Imaging Application: Provenance and Approaches, by “T. Anthony, J. P. Robinson, J. Marstrander, G. Brook, M. Horton, and F. Skidmore.” The review of the above diverse content convinces me that the promise of the wide application of big data becomes abundantly evident. A comprehensive transdisciplinary approach is also evident from the list of chapters. At this point I have to invoke the roadmap published by the National Academy of Sciences titled “Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond” (ISBN 978-0-309-30151-0). This document and its NSF counterpart states convergence as “an approach to problem solving that cuts across disciplinary boundaries. It integrates knowledge, tools, and ways of thinking from life and health sciences, physical, mathematical, and computational sciences, engineering disciplines, and beyond to form a comprehensive synthetic framework for tackling scientific and societal challenges that exist at the interfaces of multiple fields.” Big data and associated analytics is a twenty-first century area of interest, providing a transdisciplinary framework to the problems that can be addressed with convergence. Interestingly, the Society for Design and Process Science (SDPS), www.sdpsnet. org, which one of the authors has been involved with from the beginning, has been investigating convergence issues since 1995. The founding technical principle of SDPS has been to identify the unique “approach to problem solving that cuts across disciplinary boundaries.” The answer was the observation that the notions of Design and Process cut across all disciplines and they should be studied scientifically in their own merits, while being applied for developing the engineering of artifacts. This book brings the design and process matters to the forefront through the study of data science and, as such, brings an important perspective on convergence. Incidentally, the SDPS 2017 conference was dedicated to “Convergence Solutions.” SDPS is an international, cross-disciplinary, multicultural organization dedicated to transformative research and education through transdisciplinary means. SDPS celebrated its twenty-second year during the SDPS 2017 conference with emphasis on convergence. Civilizations depend on technology and technology comes from knowledge. The integration of knowledge is the key for the twenty-first century problems. Data science in general and Big Data Visual Analytics in particular are part of the answer to our growing problems. This book is a timely addition to serve data science and visual analytics community of students and scientists. We hope that it will be published on time to be distributed during the SDPS 2018 conference. The comprehensive and practical nature of the book, addressing complex twenty-first century engineering problems in a transdisciplinary manner, is something to be celebrated. I am, as one of the Foreword vii founders of SDPS, a military and commercial systems developer, industrial grade software developer, and a teacher, very honored to write this foreword for this important practical book. I am convinced that it will take its rightful place in this growing area of importance.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值