上半年爆火的两本数学科普新书,填补了国内数学教育的缺失!

图片

图灵今年上半年出了许多的书,意外的有两本书突然小火了一下。

《可变思考:数学与创造性思维》菲尔兹奖、日本学士院奖、日本政府文化勋章得主,日本数学大家——广中平祐讲述独特的“可变思考”法,呈现数学家理解“复杂”与“变化”的巧妙视角。

书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、亲子教育中培养创造性思维的原则与方法。

另外一本是《证明的故事:从勾股定理到现代数学》,享誉世界的数学史名师约翰·史迪威(John Stillwell)自《数学及其历史》后的新作!聚焦证明的历史,时间跨度从从勾股定理到现代数学。

没有证明,我们就无法谈论真正的数学。本书从古希腊几何学时代讲起,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事,讲述了证明的演变及其在数学中的重要作用和启发意义。我们将看到欧几里得、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。

《可变思考:数学与创造性思维》

作者 | [日]广中平祐

译者 | 佟凡

选自章节 | 可变思考带来创造性

01

自由意志和可变行为

在我提到“可变”时,本质上对应的是数学中的“变量”。请大家回忆高中数学课上学过的变量,变量通常设为x、y等代表数的字母,可以取各种各样的值,与只能为一个值的“常量”性质相反。

因此,如果将数学领域中的“可变”(变量)构想应用到更广阔的领域,那么就可以为“自由变化”与“自由状态”提供“可变”这一保证条件。甚至可以说,所谓自由思考,就是能够实施“可变”的行动。

让我们再来看看“变量”与思考、行动之间可能存在的关系。“变量”中有“独立变量”(自变量)的概念,它与“孤立”的意思完全相反。一般情况下,独立是指“不依靠其他因素,不受其他因素约束和支配”,而孤立是指“①得不到帮助,只能自食其力;②没有对立面”(参见日本的《岩波国语辞典》)。尽管这两个概念并非完全对立,不过在数学领域则表示完全相反的含义。

也就是说,独立变量是指可以自由赋予任何值的变量,既不会影响其他变量,也不受其他变量的影响。而数学领域的孤立指的是严格受到条件制约,无法摆脱条件限制的状态。

因此本书中的可变是指自由度高的独立变量。由于独立变量不受其他条件约束,因此我们可以同时考虑多个不同变量,这就是多维度的思考方法。

以交通工具为例来解释这件事,就比较浅显易懂了。

首先是火车。因为火车沿轨道运行,所以只能前进、后退或停止,它属于一维交通工具。

在其基础上,加上前后左右的移动方式,就变成了二维世界,这就是汽车、自行车等交通工具的移动方式。如果前方有一块大石头,二维交通工具就可以通过左右移动来避开;如果道路拥堵,二维交通工具还可以绕路而行。

尽管“越轨”这个贬义词指不端行为,但它在数学领域中则意味着“多维”。举例来说,东京在用现在的公交车取代都电(东京都电车的简称)轨道电车的过程中,曾经有一段使用无轨电车的时期。无轨电车和都电一样,需要通过触电杆连接空中的电线获取动力,不过它没有轨道。

在前后左右移动的基础上再加入上下移动,二维就变成了三维。这相当于交通系统中的立交桥,它解决了前后移动与左右移动的交通工具在交叉时产生的矛盾。

平面中前后与左右交叉导致的矛盾,如果想在平面中解决的话,那么可以增加时间维度。

时间差攻击是排球比赛中一种为大家所熟知的战术,在平面道路上,可以利用道口等阻断器强行制造时间差,或者将轨道交叉的位置设计成菱形排布来制造时间差。

当然,通过组合时间与立体世界,还可以创造出更多维度的世界。

02

不要舍弃,尝试继续添加

当你遇到某个复杂问题,因为需要考虑各种无关因素而烦恼时,一种思考方法是“舍弃所有无关因素”。

与此相对,还有一种思考方法是在处理复杂问题时“做加法”。该方法与“增加一个变量,提高一个维度”有共通之处。

举例来说,建高速公路时,两个工程组的意见有冲突,一组要建东西向,一组要建南北向。此时,通过舍弃能解决的问题是消除施工路径中凹凸不平的岩石和丘陵等障碍。这类问题只需要挖走岩石,在丘陵里挖隧道就能解决。

然而,依然会存在通过舍弃无法解决的问题。无论选择什么样的路径,东西向的道路和南北向的道路至少会在一点交叉。解决该问题的方法是建造立交桥。如果仍然在平面上思考该问题,那么不管花多长时间都无法解决,只有加入“上下”这个因素才能想出解决办法。

凭借“奇点解消”理论获得了菲尔兹奖,使用的方法就是增加新变量(观点)将复杂的问题简化。也就是说,我提出的理论是,复杂的现象其实是简单现象的投影。突出、不连续的奇点,怪异复杂的图形,其实都是由极其普通的物体投下的影子重合而成的。

03

复杂事物是简单事物投下的影子

用数学领域的说法来说,解消奇点,只需要增加参数就好。在我的理论中,要想解消n维奇点,只需要在原本的维度中增加n+1 个新参数即可。

参数是有刻度的独立变量,增加参数可以说就是增加变量。参数之所以叫作参数,是因为这不仅强调了它拥有变量的自由度,还强调了它可以作为刻度来衡量的一面。

现在,让我们从相反的角度看一看我经常使用的立交桥例子。高速公路在地面上投下影子就会形成交叉点(奇点),然而实际上道路并不交叉。那是忽视“上下”这个参数后导致的奇点,只要增加上下视角,看清道路真实的样子就能解消奇点。

再举一个例子,如果非要将一栋二层的房子画在一张平面图上,而一楼和二楼的洗手间位置又相同的话,那么在平面图上就只能看见一个洗手间。不过,在增加了高度这个参数的侧面图上,就能清楚地看到两个洗手间了。

乍一看不合理或没有逻辑的事情,很多时候是因为我们自顾自地看漏了某些因素。比如完全不考虑对方的处境,认为自己全心全意为对方着想,结果却落得糟糕的下场——这在你自己的角度来看似乎不合理,但是在充分了解你和对方的第三者眼中,这或许是非常自然的结果。

当突变发生时,有一种思考方法,即假设突变发生在一个能够用因果律解释全部事情(突变带来的问题)的世界中,它投下的“影子”就是现实中实际出现的问题。当然,也有一种立场认为,确实可以认为我们生活在复杂投影之中,但仅仅假设投影的本体存在,单纯去思考那个本体,并不能解决现实中的问题。

然而哪怕是坚持现实就是现实的人,一旦失去了构成人类本质的“自由精神”,也会立刻陷入自己勒住自己脖子的困境。能够从容地重新思考以下问题,是非常重要的。

  1. 是否是突变理论引发了新的突变,让问题越来越严重?

  2. 是否问题并不是真的突变,在更高维度中有完美的解决方法,只是自己不小心看漏了?

  3. 就算真的出现了现实中无法避免的突变,只要能够了解形成影子的本体,就可以深入理解,巧妙地应对该问题,而自己是否破坏了这种可能性?

  4. 重新从更高维度的视角看待现实中的突变,或许能够意外找到某种方法,去充分利用造成突变的推动力,而自己是否看漏了这种方法?

面对困难的问题,当做减法无法解决问题时,或许可以通过增加一个参数,让我们原本认为没用的方法变得有用,避免我们原本认为无法避免的冲突。

  推荐阅读

图片

《可变思考:数学与创造性思维》

作者:[日]广中平祐

译者:佟凡

日本数学大家、菲尔兹奖得主广中平祐著作!稻盛和夫力荐,呈现数学家观察事物的独特视角与思考方式。

《证明的故事:从勾股定理到现代数学》

作者:[澳] 约翰·史迪威(John Stillwell)

译者:程晓亮 张浩

证明是数学的荣耀,也是其最具特色的特征。然而,许多数学家并不认为证明本身是一个有趣的话题。在美国,直到大学高年级,证明才被视为数学教育的一个重要部分,那时会开设“证明导论”课程。然而,通过保留证明的概念,我们阻止了学生了解数学实际上是如何运作的。在确定一个更谦逊但准确的书名之前,我曾考虑将本书命名为《数学是如何运作的》。它是关于证明的——不仅关于证明是什么,还关于它从哪里来,或许还有它将往何处去。

我们知道数学具有逻辑结构,也知道这个结构是在不断变化的,这反映了它在人类集体思维中的演变。通常,证明一个给定定理或发展一个给定理论的方法不止一种。往往最先被发现的方法并不是最简单的或最自然的,但旧方法的痕迹因为历史惯性或因为它们迎合了人类的感官或心理而留存下来。

例如,几何学继续迎合人类的视觉直觉,即使它可以通过代数学或分析学的符号方法来完成。因此,由于意识到历史和逻辑问题,人类的数学经验得到了极大丰富,我们应该把数学作为一种丰富的经验呈现给学生们。我相信,即使是数学家,在看到证明在数学中的演变时也会受到启发,因为数学的进步往往是证明概念的进步。

本书的一个主要主题是逻辑与计算之间的关系,这里的“计算”被广泛地理解为包括经典代数。在古希腊,逻辑很强(尽管主要应用于几何),而计算很弱。

在古代中国和古印度,计算占主导地位。当代数从古印度通过阿拉伯地区传入欧洲时,欧洲的情况也是一样的。接下来在 17 世纪,欧洲进一步迈向了无穷小代数,即微积分,它在接下来的两个世纪里主导了数学(和物理学)。莱布尼茨在未发表的著作中梦想将逻辑本身归约为代数演算。当布尔在 1847 年创造了我们现在所称的布尔代数时,莱布尼茨的梦想开始成形,从而将逻辑的重要部分归约为真正的计算。

但是,直到 20 世纪,数学的完整逻辑和计算的完整概念才被很好地理解。在1879 年,弗雷格描述了适用于数学的逻辑,但逻辑和计算是数学概念而不仅仅是数学方法的观念直到 20 世纪 20 年代才出现。当这一切发生时,经过波斯特、哥德尔、图灵等人的工作,逻辑和计算成了真正的数学分支——实际上,它们本质上是同一个分支。

不幸的是,逻辑和计算的发展在很大程度上与数学的其他部分隔离开,因此它们在数学界不如应有的那样为人所知。本书试图通过呈现主流数学中发展起来的逻辑来纠正这种情况。数学史可以被视为证明的历史,因为数学对证明提出了最极端的挑战,仅举几例:毕达哥拉斯学派发现无理数、16 世纪遇到虚数、17 世纪关于无穷小的争论,以及 19 世纪与无穷大的斗争。

本书的另一个相关主题是概念的发展,因为只有当合适的抽象概念和符号可用于表达证明时,证明通常才能被清晰地表述。这在代数学的发展中表现得最为明显,许多抽象概念起源于代数学,后来传播到数学的其他部分。但是概念的发展也是几何学和分析学的关键,现在看似显而易见的概念,如“面积”和“极限”,是在与未能精确捕捉其意图的临时概念进行长期斗争后才出现的。

事实上,数学概念的网络就像定理的网络一样复杂,我试着在本书关键的地方用黑体突出定理和概念。在前几章中,新的概念足够简单且不会频繁出现,可以非正式地定义,我在后几章中进行了更形式化的定义,特别是当几个新概念一起出现并相互依赖时。

我希望本书能为一般的数学受众阐明逻辑、计算和抽象在数学中的作用,从而使读者更好地理解证明的本质。本书与其说是关于证明的介绍,不如说是基础数学中证明的全景。

我们将从逻辑和历史的角度重新审视所有数学家长期关注的多个问题,例如几何学、代数学和分析学之间的关系,以及它们看似不同的证明风格。我们将看到概念的直觉起源、对捕捉直觉的公理的追寻、从公理中产生的新直觉,以及公理所揭示的几何学、代数学和分析学之间的联系。

例如,众所周知,希尔伯特在 19 世纪 90 年代填补了欧几里得几何公理的空白。但鲜为人知的是,希尔伯特在这样做的过程中发现了几何学、代数学甚至分析学之间的新联系。我在第 3 章和第 11 章对这些联系进行了解释。

本书部分按时间顺序编排,部分按主题编排。数学领域是按时间顺序介绍的:几何学和数论、代数学、代数几何、微积分,等等。但有时我们会在按时间顺序转向下一个主题之前,长时间不打断思路地聚焦一个特定的主题。例如,第 4 章讲述了从古代到 19 世纪的代数学的故事,因为它大部分是独立的。接下来,第 5章、第 6 章和第 7 章讲述了代数学对其他数学领域(如几何学、微积分和数论)的影响。

按主题编排素材也有助于编排证明方法,因为上面提及的不同领域中有不同的证明方法。如今,这些方法如此不同,以至于一个领域的人们常常无法理解另一个领域的人们。除此之外,我希望本书能够通过解释不同领域特有的证明方法来促进相互理解。它应该适合高年级本科生阅读,并且他们的老师也可能会感兴趣——本书或许可作为我之前两本书《数学基础》(Stillwell 2016)和《反推数学》(Stillwell 2018)之间的桥梁。

像往常一样,我要感谢我的妻子伊莱恩(Elaine),她以鹰眼般敏锐的目光校对了原稿。我还要感谢马克·胡纳切克(Mark Hunacek)和匿名评审们提出的有益建议和更正。

约翰·史迪威(John Stillwell)

南墨尔本,2021 年

  推荐阅读

图片

《证明的故事:从勾股定理到现代数学》

作者:[澳] 约翰·史迪威(John Stillwell)

译者:程晓亮 张浩

数学史泰斗、旧金山大学荣休教授,“肖夫内奖”获得者,当今世界最有影响力的数学家之一约翰·史迪威全新力作!

证明是数学思想中十分重要且极具开拓性的特征之一。没有证明,就没有真正的数学!

本书从古希腊几何学时代讲起,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事,讲述了证明的演变及其在数学中的重要作用和启发意义。我们将看到欧几里得、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。

本书不是教材,而是在讲数学的历史,更是在讲数学思想的演变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值