案例6-1.4 地下迷宫探索分数 30

案例6-1.4 地下迷宫探索

分数 30

全屏浏览

切换布局

作者 DS课程组

单位 浙江大学

地道战是在抗日战争时期,在华北平原上抗日军民利用地道打击日本侵略者的作战方式。地道网是房连房、街连街、村连村的地下工事,如下图所示。

 

我们在回顾前辈们艰苦卓绝的战争生活的同时,真心钦佩他们的聪明才智。在现在和平发展的年代,对多数人来说,探索地下通道或许只是一种娱乐或者益智的游戏。本实验案例以探索地下通道迷宫作为内容。

假设有一个地下通道迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关。请问你如何从某个起点开始在迷宫中点亮所有的灯并回到起点?

 

输入格式:

输入第一行给出三个正整数,分别表示地下迷宫的节点数N(1<N≤1000,表示通道所有交叉点和端点)、边数M(≤3000,表示通道数)和探索起始节点编号S(节点从1到N编号)。随后的M行对应M条边(通道),每行给出一对正整数,分别是该条边直接连通的两个节点的编号。

输出格式:

若可以点亮所有节点的灯,则输出从S开始并以S结束的包含所有节点的序列,序列中相邻的节点一定有边(通道);否则虽然不能点亮所有节点的灯,但还是输出点亮部分灯的节点序列,最后输出0,此时表示迷宫不是连通图。

由于深度优先遍历的节点序列是不唯一的,为了使得输出具有唯一的结果,我们约定以节点小编号优先的次序访问(点灯)。在点亮所有可以点亮的灯后,以原路返回的方式回到起点。

输入样例1:

6 8 1
1 2
2 3
3 4
4 5
5 6
6 4
3 6
1 5

输出样例1:

1 2 3 4 5 6 5 4 3 2 1

输入样例2:

6 6 6
1 2
1 3
2 3
5 4
6 5
6 4

输出样例2:

6 4 5 4 6 0

问题分析

  1. 迷宫节点和边
    • 节点表示灯和开关。
    • 边表示通道,节点之间的直接连通关系。
  2. 目标
    • 从指定起点出发,遍历所有节点(点亮灯)。
    • 如果无法遍历所有节点,输出部分遍历路径并以 0 结束。
  3. 路径唯一性
    • 采用深度优先搜索(DFS),并在访问时优先选择编号最小的邻居节点。

解题步骤

  1. 输入数据
    • 读取节点数 NNN、边数 MMM、起始节点 SSS。
    • 使用邻接表存储边的关系,并对每个节点的邻居列表排序。
  2. DFS 遍历
    • 从起始节点 SSS 开始,访问所有能访问的节点。
    • 记录路径,同时注意在回退时也记录路径(形成回路)。
  3. 连通性检查
    • 如果所有节点都被访问过,说明是连通图,输出完整路径。
    • 否则,输出部分路径并以 0 结束。
  4. 实现优先访问规则
    • 使用排序保证节点编号小的邻居优先访问。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

vector<vector<int>> adj; // 邻接表存储图
vector<bool> visited;    // 标记是否访问过
vector<int> path;        // 存储访问路径

// 深度优先搜索
void dfs(int node) {
    visited[node] = true; // 标记当前节点已访问
    path.push_back(node); // 记录访问路径

    // 按小编号优先顺序访问邻居
    for (int neighbor : adj[node]) {
        if (!visited[neighbor]) {
            dfs(neighbor); // 递归访问
            path.push_back(node); // 回退时记录路径
        }
    }
}

int main() {
    int N, M, S;
    cin >> N >> M >> S;

    adj.resize(N + 1);    // 节点编号从 1 到 N
    visited.resize(N + 1, false);

    // 输入边信息,构建邻接表
    for (int i = 0; i < M; ++i) {
        int u, v;
        cin >> u >> v;
        adj[u].push_back(v);
        adj[v].push_back(u);
    }

    // 对邻接表进行排序,保证小编号优先
    for (int i = 1; i <= N; ++i) {
        sort(adj[i].begin(), adj[i].end());
    }

    // 从起始节点开始 DFS
    dfs(S);

    // 检查是否所有节点都被访问过
    bool allVisited = true;
    for (int i = 1; i <= N; ++i) {
        if (!visited[i]) {
            allVisited = false;
            break;
        }
    }

    // 输出路径
    for (int node : path) {
        cout << node << " ";
    }

    // 如果不是连通图,最后输出 0
    if (!allVisited) {
        cout << "0";
    }

    return 0;
}

代码关键点解析

  1. 邻接表排序
    • 通过 sort 保证邻接表的访问顺序。
  2. 路径回退
    • 每次递归返回时,将当前节点重新加入路径,形成闭合回路。
  3. 连通性判断
    • 检查 visited 数组是否所有节点都被访问过。

时间复杂度

  1. 邻接表构建:O(M)O(M)O(M)
  2. 邻接表排序:O(Nlog⁡N)O(N \log N)O(NlogN)(每个节点排序)
  3. DFS 遍历:O(N+M)O(N + M)O(N+M)
  4. 总体复杂度:O(N+M+Nlog⁡N)O(N + M + N \log N)O(N+M+NlogN)

空间复杂度

  • 邻接表:O(N+M)O(N + M)O(N+M)
  • 访问标记数组:O(N)O(N)O(N)
  • 路径存储:O(N)O(N)O(N)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DsirNg

加油努力,千万不要放弃

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值