ransac拟合直线

目录

1 原理

1 基本假设

2 ransac算法流程

2 公式

3 RANSAC算法拟合直线步骤

4 RANSAC算法拟合直线公式

5 代码示例

        RANSAC(Random Sample Consensus,随机采样一致性)算法是一种基于随机采样的迭代算法,主要用于从一组包含大量噪声和异常值(外点)的数据中估计数学模型的参数。以下是对RANSAC算法的原理及公式的详细解释:

1 原理

  1. 1 基本假设

    • 内点(Inliers):这些点是能够被假设的数学模型正确描述的数据点,即它们与模型预测的结果较为接近。
    • 外点(Outliers):这些点是偏离正常范围很远、无法被模型描述的数据点,通常是由于噪声、测量错误或错误的数据关联等原因产生的。

        RANSAC算法的基本思想是在假设数据集中包含正确数据(内点)和异常数据(外点)的前提下,通过随机采样和迭代的方式,找到能够最好地描述内点数据的数学模型。

      2 ransac算法流程

  1. 随机采样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值