TV_ITEM结构

本文介绍了CTreeView项结构TV_ITEM的详细内容,包括各成员变量的作用、有效标志及节点状态等,为理解Windows程序中树形视图组件的工作原理提供帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作用:该结构是CTreeView的一个项。

结构原型:

typedef struct _TV_ITEM { tvi UINT mask; HTREEITEM hItem; UINT state; UINT stateMask; LPSTR pszText; int cchTextMax; int iImage; int iSelectedImage; int cChildren; LPARAM lParam; } TV_ITEM, FAR* LPTV_ITEM;成员:mask:用于指定其它成员的有效性,可以是以下值:TVIF_CHILDREN cChildren 成员有效TVIF_HANDLE    hItem 成员有效TVIF_IMAGE       iImage 成员有效TVIF_PARAM      lParam 成员有效TVIF_SELECTEDIMAGE  iSelectedImage 成员有效TVIF_STATE         state 和stateMask 成员有效TVIF_TEXT       pszText 和cchTextMax 成员有效hitem:指向自身的句柄State:指定了该项的状态,可以是下列值:TVIS_EXPANDED 该节点是展开状态的TVIS_EXPANDEDONCE  该节点和所有子结点是展开状态的TVIS_EXPANDPARTIAL 该节点的部分子节点以展开状态显示TVIS_CUT    该结点被选择用来进行剪切和粘贴操作.
TVIS_SELECTED   该结点被选中
TVIS_FOCUSED 该节点具有输入焦点.TVIS_DROPHILITED 该节点成为拖动操作的目标.pszText:指定该节点的captioncchTextMax:指定 pszText成员的缓冲区大小 cChildren:指定该节点是否有子节点,0:没有,1:有。 
更改文件代码,其中训练集和测试集的分配方式如split_datasets所示不变,但是对于测试集,将用户未交互的项目都看作负样本,修改哪里是最高效的: import pickle import torch import Pre_train_function_3 as PF from ctr_dataset_mine_5_neg_pre_t3 import * from Pre_train_me_new import Pre_train import torch.nn as nn import tqdm # 定义数据保存路径 num_users = 500 DATA_CACHE_PATH = 'D:/Desk/code-try/data_read/4domains_.pkl' ITEM_REVIEWS_CACHE_PATH = 'D:/Desk/code-try/data_read/item_reviews.pkl' DATA_CACHE_PATH = DATA_CACHE_PATH.replace('.pkl', str(num_users)+'.pkl') ITEM_REVIEWS_CACHE_PATH = ITEM_REVIEWS_CACHE_PATH.replace('.pkl', str(num_users)+'.pkl') with open(ITEM_REVIEWS_CACHE_PATH, 'rb') as f: item_reviews = pickle.load(f) raw_source_files = [ 'D:/Desk/code-try/datasets/extract_t/Books_.jsonl', 'D:/Desk/code-try/datasets/extract_t/Kindle_Store_.jsonl', 'D:/Desk/code-try/datasets/extract_t/Music_.jsonl' ] source_files = [file.replace('.jsonl', str(num_users)+'.jsonl') for file in raw_source_files] target_file='D:\Desk\code-try\datasets\extract_t\Movies_&_TV_.jsonl' target_file = target_file.replace('.jsonl', str(num_users)+'.jsonl') # 构建跨域数据集 item_mapping_all, user_hist, domain_items = build_cross_domain_dataset( source_files, target_file, threshold=0.7, # 正样本评分阈值 neg_ratio=5 # 负样本采样比例(正样本数×5) ) pop_dict = PF.compute_item_popularity(source_files + [target_file]) print(len(pop_dict)) test_label = 3 train_loader, test_loader = create_data_loaders( item_mapping_all, user_hist, test_label, domain_items, item_reviews, pop_dict, test_rate=0.6, batch_size=32 )
最新发布
03-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值