《18.BAM- Bottleneck Attention Module》

本文提出了一种结合通道注意力和空间注意力的双注意力模型,旨在改进SENet仅关注通道间信息的局限性。通过独立处理并融合通道与位置信息,该模型能够更全面地调整输入特征图的权重,从而提升特征学习的效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动机

  • SENet在调整特征权值的时候只是关注了通道间的信息,
  • 本文将通道信息和位置信息分别用两个注意力模型实现,然后融合来调整输入特征图的权重。

网络结构

  • 下面是block可以加入的方式,在原来的网络中加入来调整某些层的权重。

1542971705244

  • 整体公式

1542971846445

  • 通道注意力模型

1542971886836

  • 空间注意力

1542971930682

  • block框架

1542971978292

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值