最大子序和(maxSubArray)

文章介绍了如何使用动态规划解决寻找整数数组的最大子序列和问题。首先给出基础实现,通过dp数组存储以每个元素结尾的最大子序列和,然后优化空间复杂度,只用一个变量即可。最后展示了官方的动态规划分治解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大子序和

题目说明

给定一个整数数组 ·nums· ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例

image

个人思路

抽象实现

  1. dp[i] 表示以num[i]为结尾的情况下, nums[0: i + 1]最大子序和
  2. 计算dp[i]的公式
for i in range(0, len_nums):
  dp[i] = max(nums[i], dp[i - 1] + nums[i])

具体实现

/**
 * 计算最大子数组的和
 * @param data
 * @returns {number}
 */
function maxSubArray(data){

    let dp = new Array(data.length).fill(Number.MIN_VALUE);
    dp[0] = data[0]
    for (let i=1;i<data.length;i++) {
        dp[i] = Math.max(dp[i - 1] + data[i], data[i])
    }

    let max = Number.MIN_VALUE;
    dp.forEach(value => max = Math.max(max, value))

    return max
}

优化

  • 当前的时间复杂度和空间复杂度均为O(N),但其实dp并不需要维护一个O(N)的数组,所以有优化代码如下
/**
 * 计算最大子数组的和(优化空间复杂度)
 * @param data
 * @returns {number}
 */
function maxSubArray2(data){

    let res, dp;
    res = dp = data[0]

    for (let i=1;i<data.length;i++) {
        dp = Math.max(dp + data[i], data[i])
        res = Math.max(res, dp)
    }

    return res
}

官方解答

  • 动态规划
  • 分治
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值