ENC原理介绍

ENC 全称是 Environmental Noise Cancellation(环境降噪技术)。ENC 主要降低通话时非目标语音噪声,确保通话清晰。

ENC 包括单麦环境降噪和双麦环境降噪。
单麦环境降噪通常以环境噪声为随机平稳加性噪声、且与语音信号不相关为前提估计噪声,然后进行滤波。因此,单麦环境降噪的效果比较差。 但笔者目前接触过一款单麦的ENC降噪耳机降噪效果非常可以,做法是将mic和喇叭放在一起,mic收音原理是通过耳腔空气振动,从而避免了外界环境噪音的影响。

双麦环境降噪则是通过双麦克风阵列,精准计算通话者说话的方位,在保护目标语音的同时,滤除环境中的各种干扰噪声。其工作原理大致如下:在进行环境噪声滤波模块计算之前,先校正语音麦克风和参考麦克风的增益,以及两个麦克风的时延。然后检测语音麦克风采集到的数据是否为语音段。若为语音段(即上行通话),则根据参考麦克风采集到的环境噪声和语音麦克风的语音数据,预估环境噪声,并计算相应的噪声抑制参数,最终由滤波器模块滤出环境噪声;反之,不进行环境噪声滤除,上行通话输出为静音。
在这里插入图片描述
当我们在一个嘈杂的环境对通话 Mic 讲话时,会产生两个电信号,一个是我们的语音信号 VVoice1,一个环境噪声信号 VNoise1;同时降噪 Mic 也会产生一个我们微弱的语音信号 VVoice2,和一个环境噪声信号 VNoise2。 因为通话 Mic 和降噪 Mic 距离的原因,产生的 VVoice1 将会远远大于 VVoice2;而与之相对的环境噪声,并不会有这个问题,所以 VNoise1 与 VNoise2 近似相等。系统内部就可以用一个差分放大电路通过运算: V 通话 Mic – V 降噪 Mic =( VVoice1+ VNoise1)-(VVoice2+ VNoise2)≈ VVoice1,通过双麦克采集配合差分放大电路的综合作用,就实现了清晰的拾音。

从效果表现上看:ANC 是针对于耳机使用者,自己听到的降噪效果。ENC 是针对通话时,电话那头听到的降噪效果(非耳机使用者自己的感受)。从原理上看,二者有些技术的使用是有重叠的,比如自适应滤波器。但 ANC 更多的是反相叠加噪声。ENC 除了降噪,还有增益控制,回声消除,以及多麦场合下的 BeamForming。ENC 的降噪部分重在降低有规律的稳态噪声,或根据多麦拾取到效果的相关运算除噪声。

参考链接:https://blog.csdn.net/weixin_44316365/article/details/128005170

03-23
<think>好的,用户想了解DN-DETR模型的实现和应用。首先,我需要回忆一下DN-DETR的基本信息。DN-DETR是在DETR基础上改进的模型,主要解决训练收敛慢的问题。DETR使用Transformer进行目标检测,但训练需要较长时间,DN-DETR通过去噪训练(Denoising Training)来加速这一过程。 接下来,我应该先介绍DN-DETR的核心原理。比如,它如何引入去噪任务,让模型在训练时同时处理带噪声的边界框和真实标注,从而学习更稳定的特征表示。这部分需要解释清楚去噪机制的作用,可能涉及二分图匹配的优化,减少匈牙利算法带来的不稳定。 然后是模型实现的关键点。用户可能需要知道代码结构,比如如何集成去噪模块,修改Transformer的Decoder部分。可能需要提到添加的denoising groups和noise scale参数,以及如何处理不同的噪声类型,如中心偏移和尺度缩放。代码示例部分要展示关键的类或函数,比如DenoisingGroup的实现,使用nn.Embedding来处理噪声,以及前向传播中的处理步骤。 应用场景方面,DN-DETR适用于需要高效目标检测的领域,如自动驾驶、视频监控和图像分析。需要具体说明每个场景中的优势,比如实时性要求高的环境下,DN-DETR的快速收敛带来的好处。 还要注意用户提到的格式要求,所有数学表达式用$...$,独立公式用$$...$$。比如在解释损失函数时,可能需要写出公式,如分类损失和回归损失的组合,用LaTeX正确排版。此外,引用部分要检查是否正确添加,比如在提到DETR原始论文时加上引用标识。 最后,生成相关问题时要考虑用户可能进一步的需求,比如性能对比、部署优化、与其他模型结合的可能性,以及训练细节。这些问题需要紧扣DN-DETR的特点,帮助用户深入探索。 现在需要确保回答结构清晰,分点说明原理、实现步骤、应用场景,代码示例正确,并且符合格式要求。同时,语言要简洁,用中文,避免使用复杂术语,必要时解释概念。最后的问题部分要涵盖原理、实现、应用和扩展,帮助用户全面了解DN-DETR。</think>### DN-DETR模型实现与应用 #### 1. 核心原理 DN-DETR(Denoising DETR)通过引入**去噪训练机制**改进原始DETR模型的收敛速度问题[^1]。其核心思想是在Transformer解码器中添加带噪声的边界框作为额外输入,迫使模型学习从噪声中恢复真实标注的能力。具体实现中: - 在训练时向真实标注框注入高斯噪声,生成噪声框: $$b_{noise} = b_{gt} + \Delta, \quad \Delta \sim \mathcal{N}(0,\sigma^2)$$ - 通过对比预测结果与原始标注、噪声标注,增强模型的特征解耦能力 - 采用**混合匹配策略**,同时计算原始查询和去噪查询的匹配损失 #### 2. 实现关键步骤 ```python class DenoisingGroup(nn.Module): def __init__(self, num_classes, hidden_dim, num_queries): super().__init__() self.label_enc = nn.Embedding(num_classes, hidden_dim) # 类别编码 self.bbox_noise = nn.Parameter(torch.Tensor(4)) # 噪声参数 def forward(self, gt_boxes, gt_labels): # 生成噪声标注 noisy_boxes = gt_boxes + torch.randn_like(gt_boxes) * self.bbox_noise # 构建去噪查询 denoising_queries = self.label_enc(gt_labels) + self.bbox_enc(noisy_boxes) return denoising_queries ``` #### 3. 典型应用场景 1. **实时目标检测**:在自动驾驶系统中实现高效车辆/行人检测 2. **视频分析**:处理连续视频帧时保持稳定的检测性能 3. **工业质检**:对精密零件进行快速缺陷定位
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值