- 博客(94)
- 收藏
- 关注
原创 架构演进核心路线:从离线仓库到实时湖仓一体
过去:堆工具,拼链路,谁用谁造轮子。未来:统一湖仓资产,统一批流口径,统一数据治理。重构大数据平台,核心不是技术炫技,而是:✅ 降本提效✅ 数据一致✅ 快速交付✅ 治理闭环✅ 价值转化数据即资产,架构为能力,平台为底座,治理为保障。
2025-07-22 23:45:13
112
原创 现代数据平台能力地图:如何构建未来数据平台的核心能力体系
它是围绕:数据的接入 → 存储 → 计算 → 治理 → 服务 → 消费全生命周期构建的能力体系。
2025-07-14 23:49:03
75
原创 为什么企业都在重构大数据平台?
数据平台重构不是简单的技术更替,而是支撑企业未来数据竞争力的基建工程。✅ 能力统一(湖仓一体 / 批流一体)✅ 治理完善(元数据 / 质量 / 安全 / 生命周期)✅ 消费升级(数据服务化 / 指标产品化)唯有这样,企业才能从数据堆砌者转型为数据能力运营者,让数据真正服务于业务、产品与决策。
2025-07-14 22:57:17
349
原创 数据治理全景能力图谱与路线图:构建企业级数据治理的全貌视角
我们在这个专栏中,走过了从基础认知 → 核心能力 → 行业落地 → 运营体系 的完整路径:✅ 看清了治理的“全貌图”✅ 掌握了九大能力的实战要点✅ 学习了金融/医疗等典型落地方式✅ 建立了从启动到成熟的推进路线📌这不是结束,而是开始。数据治理不止是 IT 的事,更是企业数字化战略中的中枢神经。希望本系列内容,能成为你带团队、建平台、做治理变革的“路线参考”。
2025-07-09 22:52:08
164
原创 打造企业级数据治理运营体系:从项目到产品,再到体系化运营
企业级数据治理,最终走向不是“项目交付”,而是“体系运营”:平台支撑多角色协作流程驱动治理闭环指标度量治理成果组织推动持续改进治理工作只有“活”在运营体系中,才真正具备生命力。🎯 下一篇,将作为本专栏终章,我们一同回顾串联起从认知、能力、落地到运营的全景框架,形成一套可落地、可迭代、可推广的企业数据治理路线图。
2025-07-09 22:32:34
323
原创 行业实践案例:医疗行业数据治理的挑战与突破
医疗行业的数据治理是“合规+智能”的双高挑战:数据多源、多模态法规约束严格使用场景复杂标准难以对齐但正因如此,医疗行业也是最具突破潜力的治理阵地,未来可以探索:FHIR + AI 实现跨院所语义互通临床智能质控自动化医疗大模型驱动的数据标注与治理《打造企业级数据治理运营体系》,从“平台-流程-指标-组织”四个维度,构建可运营、可生长的数据治理体系。
2025-07-08 22:31:48
179
原创 行业实践案例:金融行业数据治理体系全景解析
金融行业是数据治理的深水区,也是最成熟的治理实践场景治理不是锦上添花,而是保障业务稳定、合规运营的底座以监管为驱动,以安全为底线,以平台为抓手,是落地关键其治理体系的成熟度,值得其他行业参考和借鉴下一篇,我们将走进医疗行业数据治理实践,探索在敏感数据密集、非结构化数据占比高的场景中,治理如何结合隐私保护、语义建模与数据安全,实现智能化和合规并举。
2025-07-08 21:58:08
296
原创 AI + 数据治理的趋势:让治理更智能、更敏捷
AI 已经成为数据治理的“第二引擎”大模型让治理更敏捷、更可用但也需要结合业务、法律和审计共同落地未来治理必将是人机协同,而非人或机器单打独斗下一篇,我们将一起拆解行业实践案例:金融领域数据治理,看看在强监管行业,数据治理体系是如何真正落地生根的。
2025-07-07 22:51:27
61
原创 治理与数据安全合规体系:如何双轮驱动
安全合规并不是治理的附属品,而是治理的基石没有安全,治理就失去合法性没有治理,安全也无法高效执行下一篇,我们会聚焦AI + 数据治理的趋势,带你一起探索大模型、智能血缘、自动化质量检测如何赋能下一代数据治理体系。
2025-07-07 22:34:28
30
原创 治理自动化:流程与工具,打造可持续的治理能力
治理自动化是未来企业数据治理的必选项:降低人力依赖提升治理效率让制度可执行、可追溯建立可持续运转的治理体系下一篇,我们将聚焦治理与数据安全合规体系,深入解析如何把合规要求(比如个人信息保护、GDPR、等保2.0)融入到治理框架中,实现合规和治理的一体化建设。
2025-07-07 22:21:29
156
原创 数据治理指标与评估体系:量化你的治理成效
数据治理成效必须可量化指标要覆盖:过程 + 结果 + 价值融合成熟度模型,更容易说服管理层指标体系的搭建和优化,要形成持续的治理闭环在下一篇,我们将进入数据治理架构设计实战,详细拆解一个企业数据治理平台应该包含的关键模块、架构方案以及建设要点,帮你把治理理念真正落地为可用的系统。
2025-07-05 00:38:08
43
原创 数据治理组织与角色体系:职责、分工与落地实践
数据治理组织体系=角色 + 权责 + 制度 + 激励Owner 负责数据战略和资产归属Steward 负责数据标准、质量、血缘等日常治理没有组织,就没有持续的数据治理下一篇,我们会进入数据治理评估与指标体系,帮助你量化治理的成效,真正把“管好数据”从口号变成可度量、可运营的管理能力。
2025-07-05 00:31:03
35
原创 数据可观测性实战:从监控、度量到可追溯的治理闭环
数据可观测性正在成为现代数据治理体系不可或缺的模块。它不仅帮助你快速发现问题,还能推动:责任归属清晰数据 SLA 落地自动化修复未来,伴随 AIOps(自动化智能运维)技术发展,数据可观测性也会进一步融合:AI 异常检测Root Cause 分析(自动根因定位)智能调优能力恭喜你,完成了数据治理九大能力的系统化学习:1️⃣ 数据目录管理2️⃣ 数据标准治理3️⃣ 元数据治理4️⃣ 数据血缘分析5️⃣ 指标治理6️⃣ 数据质量治理7️⃣ 数据安全与权限治理。
2025-07-02 15:11:45
20
原创 数据生命周期管理实战:建、用、管、存、归档到销毁的全流程治理
数据生命周期管理(Data Lifecycle Management, DLM),就是在数据从诞生到消亡的每个阶段,制定规则、执行治理,确保数据具备:可用性合规性安全性成本优化该保存时保存该归档时归档该删除时删除同时保证业务连续性、合规性以及资源利用最大化关键能力实施建议生命周期规则与法务、合规团队共建标准分层存储避免所有数据都放到“热存储”归档流程建立归档后查询可追溯方案销毁管理结合审计,按法律规定彻底销毁自动化使用调度 + 策略中心,降低人力。
2025-06-30 11:29:50
112
原创 数据安全与权限治理实战:分类分级、脱敏保护与访问控制
关键能力实施建议分类分级建立统一的“数据标签标准”,推动字段治理权限控制优先推行 RBAC,逐步引入 ABAC 精细策略脱敏机制样例驱动,覆盖关键数据域(客户、财务、人事)安全审计所有关键资源应接入审计平台,支持行为追踪安全教育定期组织员工“数据安全培训”,避免人为泄露。
2025-06-23 10:54:23
172
原创 元数据治理实战:构建企业数据地图与血缘体系
元数据(Metadata)是描述数据的数据,是你能了解“数据是怎么来的”、“它是做什么的”、“能不能用”的基础信息。📌 举个例子:order_idstringods_order定义:平台内用户在订单系统中产生的唯一订单编号更新时间:每天凌晨 2 点,由 Airflow 调度任务生成所属人:张三(数据开发部)🔍 这些信息本身不直接参与计算,但它们是数据可管理、可追踪、可评估的基础。模块实战建议元数据类型技术 + 业务 + 操作元数据三类统一治理治理路径。
2025-06-23 10:44:00
59
原创 主数据管理实战:构建唯一、权威的核心数据源
主数据(Master Data)是企业在多个系统和业务线中都会使用的、核心且高复用的数据实体。📌 通俗理解:是“贯穿整个公司系统”的那批基础对象是“名字要统一、属性要一致”的数据类型示例客户客户 ID、姓名、电话、客户等级等产品商品编号、名称、分类、规格、品牌等组织公司、部门、组织架构、法人信息等供应商供应商编码、联系人、地址、合同编号等员工工号、姓名、职位、所属部门、入职时间等为什么必须治理?系统割裂 → 数据不一致报表混乱 → 决策口径不同。
2025-06-20 16:43:39
314
原创 数据质量治理实战:维度、规则、监控与修复全解析
数据质量治理,是指通过制度、规则与工具手段,确保数据在采集、加工、使用、存储等各环节中的准确性、完整性、一致性、及时性、唯一性、安全性等维度达到业务所需标准。
2025-06-20 10:42:49
176
原创 数据标准治理实战:指标、元数据、术语一把抓
数据标准治理是企业数据管理的基础,通过建立统一的数据规范体系,解决指标口径不一、元数据混乱、业务术语歧义等问题。核心治理对象包括指标标准化(统一计算逻辑)、元数据规范(命名规则与注释)和业务术语统一(消除沟通障碍)。实施路径建议分阶段推进,初期梳理现状、中期建设治理平台、后期打通全流程体系。有效的标准治理能够提升数据复用性、增强跨部门协作效率,为后续数据质量治理等能力建设奠定基础。
2025-06-20 10:30:46
119
原创 数据治理能力框架全解析:从概念到落地
数据治理需要构建完整的能力框架体系,包括数据标准、质量、安全等九大核心能力域。框架应分阶段实施:初期建立基础标准,中期搭建资产化能力,后期完善治理闭环机制。建议企业根据成熟度模型逐步推进,从混沌期到智能期实现数据治理的全面优化。该框架为数据战略落地提供清晰路径,是制度、工具和人员的综合体系。
2025-06-07 11:11:10
248
原创 什么是数据治理?为什么企业需要它?
《数据治理:企业数字化转型的战略基石》摘要(148字) 数据治理是企业为实现数据全生命周期管理而建立的制度体系,不同于侧重技术实现的数据管理,它更注重制定规则与标准。随着企业数据量激增,数据口径不一、质量低下等问题凸显,数据治理成为解决这些痛点的关键。其核心价值在于提升数据可信度、降低合规风险、促进资产化并支撑数智化转型。有效的治理机制能确保数据从"成本"转变为"资产",为企业决策提供可靠依据。未来,建立可持续的数据治理体系将成为企业数字化转型的重要基石。
2025-06-07 10:29:34
162
原创 私有云大数据部署:从开发到生产(Docker、K8s、HDFS/Flink on K8s)
本文介绍了企业如何在私有云或混合云中构建高可用大数据平台的实践方案。通过容器化技术将Flink、Spark等计算引擎部署在Kubernetes集群,配合HDFS本地存储或MinIO等替代方案,搭建包含资源编排、监控告警、安全认证的完整平台架构。文章详细说明了Flink在K8s的部署方法、镜像构建标准、HDFS存储方案选择,以及Prometheus+Grafana监控体系的实施要点,并给出了权限管理和CI/CD集成的建议。该方案既满足企业对数据安全与成本控制的需求,又提供了从数据处理到监控的一站式解决方案。
2025-05-30 23:50:57
1012
原创 如何设计高效的数据湖架构:存储策略、Schema 演进与数据生命周期管理
本文探讨现代数据湖架构的设计与实践,重点分析数据存储组织、Schema演进管理、冷热数据分层和生命周期治理等核心问题。内容涵盖分区/分桶/压缩/索引等存储策略,Schema兼容性解决方案,冷热数据自动分层方案,以及TTL管理与定期压缩等治理手段。文章推荐Hudi/Iceberg等工具链配置,并提出多源写入规范、小文件控制等实践建议,旨在帮助构建性能优化、成本可控且易于演进的数据湖平台。数据湖作为实时与离线融合的关键平台,其价值在于统一接口的同时提供灵活扩展和生命周期控制能力。
2025-05-28 23:14:28
543
原创 海量数据查询加速:Presto、Trino、Apache Arrow 实战指南
【摘要】本文针对PB级数据分析场景,系统对比了Presto与Trino架构特性,推荐采用支持向量化执行的Trino引擎。通过Apache Arrow实现内存列式计算加速,提供了从部署配置到查询优化的全链路实践方案,包括Parquet存储优化、Join策略调整等关键技术。实测显示Trino较传统方案有5-10倍性能提升,最后给出不同场景的选型建议(如BI查询推荐Trino+StarRocks组合),为构建高性能分析平台提供实用指南。
2025-05-26 16:23:34
544
原创 大数据作业优化:资源调度、并行度、数据倾斜处理实战
【大数据作业性能调优指南】针对生产环境中的大数据计算作业,本文提供从资源调度到并行度设置的完整调优方案。重点解析YARN/K8s/Flink等调度框架特点,给出Flink资源配置模板(内存/并行度/Checkpoint等关键参数建议值),并详细说明数据倾斜的诊断方法(附检测代码)与三大优化策略:Key打散、广播维表Join和局部预聚合。最后汇总常见场景调优建议,如并行度设置范围4-16、Checkpoint间隔60-300秒等,帮助构建高效稳定的数据处理作业。
2025-05-26 14:19:53
432
原创 Kafka + Flink + Spark 构建实时数仓全链路实战
本文详细介绍了基于Kafka+Flink+Spark构建实时数仓的全链路方案。架构包含数据源接入层(Kafka多Topic解耦)、实时处理层(Flink清洗/聚合)、离线补数层(Spark批量处理)以及指标服务层(DWS/ADS)。重点阐述了Kafka主题设计、Flink实时处理逻辑、Spark离线补数机制及数据一致性保障方案,并提供了实践建议和典型场景处理方法。该架构实现了秒级指标刷新、数据可追溯性及多业务域扩展能力,为现代实时数仓建设提供了标准化解决方案。
2025-05-24 13:00:00
1138
原创 高效数据存储:列式存储、分区、索引优化实战
优化点操作建议存储格式选择Spark 用 Parquet,Hive 用 ORC,开启 ZSTD分区优化日级动态分区,慎用高基数字段分桶优化在 Join 场景提前统一桶数与字段向量化开启向量化扫描小文件治理控制文件大小,使用 Compaction 合并冷数据冷热分层热区高频小数据,冷区大文件归档,按需查询合并高效的数据存储不是简单选择格式或分区字段,而是结合业务访问特点与平台执行引擎,合理进行:格式选型分区与分桶设计查询优化配置存储生命周期管理✅ 存储即架构,优化即性能!
2025-05-24 08:41:34
313
原创 大数据任务调度实战:DolphinScheduler 与 Airflow 深度解析与最佳实践
本文深入探讨了大数据调度系统的工程实践方法,重点分析了DAG模型、多任务依赖、Flink/Spark作业调度、生产级容错策略,以及DolphinScheduler与Airflow的选型差异。
2025-05-23 11:20:03
466
原创 大数据实时分析:ClickHouse、Doris、TiDB 对比分析
需求类型推荐高吞吐日志分析ClickHouse实时数仓 + 指标分析Doris在线服务 + 实时分析TiDB高更新频率 + 明细级数据Flink SQL 写入支持Doris(原生)本篇我们系统分析了三款主流实时分析数据库的架构、性能与实践场景,旨在帮助大家更合理地做出平台选型,并结合 Flink 等流处理系统构建实时分析体系。📘 第14篇:《大数据任务调度:DolphinScheduler、Airflow 实战》内容将覆盖:DAG 调度模型多任务依赖管理。
2025-05-19 23:49:28
1135
原创 【数据仓库面试题合集④】SQL 性能调优:面试高频场景 + 调优策略解析
在数据仓库岗位的面试中,SQL性能调优是重点考察内容。本文整理了高频面试题及答题参考,帮助应聘者更好地应对面试。常见问题包括如何排查慢SQL、优化JOIN操作、处理数据倾斜、利用分区加速查询以及SparkSQL中的性能调优参数。排查慢SQL时,需关注执行计划、扫描行数、索引命中情况等;优化JOIN操作可通过小表广播、分桶、预聚合等方式;处理数据倾斜可采用随机前缀、skewjoin等方法;分区加速查询需合理建表并明确指定分区字段…
2025-05-19 15:25:23
1277
原创 【数据仓库面试题合集③】实时数仓建模思路与实践详解
实时数仓建模是连接流处理引擎能力与业务建模能力的桥梁。面试中要兼顾:对数仓分层结构的清晰理解;面向实时业务场景下的实际建模策略;对数据质量保障与可观测性的关注;下一篇我们将介绍:【数据仓库面试题合集④】Kafka + Flink 架构设计与高频问题解析,欢迎关注持续更新。
2025-05-19 14:03:21
918
原创 数据仓库面试题合集②】ETL 设计与调度策略详解
面试官常问ETL与调度问题,因为它们是数据链路的关键,影响数据处理的稳定性、扩展性和时效性。面试中,这些问题考察候选人对数据流设计、任务依赖、失败容错、复杂调度DAG设计、增量/全量策略、分区机制和资源优化的理解。高频面试题包括ETL处理链路设计、拉链表实现、调度依赖DAG设计、全量vs增量抽取选择、上游数据延迟或失败处理、跨天调度和复杂场景处理。回答时应展示真实案例,强调对数据一致性、延迟处理和失败恢复机制的理解,并提及熟悉的调度工具和编排经验。
2025-05-19 10:46:56
1444
原创 数据湖与数据仓库融合:Hudi、Iceberg、Delta Lake 实践对比
在数据湖与数据仓库边界不断融合的背景下,企业越来越多地采用如Hudi、Iceberg、DeltaLake等开源方案,以实现统一的数据存储、计算和分析平台。这些方案在实时写入能力、ACID保证、增量数据处理、流批一体、Schema演进等方面展现出独特优势。本文详细对比了Apache Hudi、Apache Iceberg和DeltaLake这三大主流开源方案的主要特性,包括写入模式、并发写支持、实时查询、事务支持、Schema进化、引擎兼容性及Metadata管理。此外,文章还提供了典型应用场景的推荐方案、性
2025-05-17 09:51:29
596
原创 【数据仓库面试题合集①】数据建模高频面试题及解析
这是《数据仓库面试题合集》系列的第一篇,后续我还会围绕:ETL 设计与调度策略实时数仓建模思路SQL 性能调优数据治理与血缘追踪。
2025-05-16 10:50:43
737
原创 Flink 运维监控与指标采集实战(Prometheus + Grafana 全流程)
Flink运维监控在实时计算场景中至关重要,因为Flink作业需要7×24小时稳定运行,对性能、资源、故障感知和状态变化的实时监控是保障系统稳定的关键。Flink自带的Metrics系统提供了基本的监控能力,但为了更全面的监控,Prometheus+Grafana成为最主流的解决方案。通过配置PrometheusReporter和Grafana仪表盘,可以实现对Flink作业的全面监控,包括CPU、内存、吞吐量、Checkpoint状态、KafkaSink性能等关键指标。此外,自定义指标采集和报警机制的配置
2025-05-15 21:32:34
893
原创 Flink 实时数据一致性与 Exactly-Once 语义保障实战
本篇将围绕如何实现端到端的数据一致性、如何正确使用 Checkpoint、状态管理、Sink 的幂等性控制,以及与 Kafka / OLAP 系统的写入一致性设计进行详解
2025-05-10 23:10:42
631
原创 Flink 运维监控与指标采集实战
在实时任务处理中,监控是确保业务连续性和系统稳定性的关键。由于任务失败、数据延迟和资源瓶颈等问题往往不易察觉,构建一个全面的Flink运维监控体系变得尤为重要。Flink提供了丰富的内部指标,这些指标可以通过MetricsReporter采集到外部系统如Prometheus和InfluxDB。为了有效监控,可以部署Prometheus来采集Flink指标,并通过Grafana进行可视化展示。此外,开发者可以通过MetricGroup实现自定义指标的暴露,以提升业务的可观测性。监控系统应包括对Checkpoi
2025-05-10 11:43:25
727
原创 Flink SQL & DataStream 融合开发模式与动态配置热加载机制实战
通过 SQL 与 DataStream 的融合开发模式,配合动态配置机制,我们可以实现高灵活、高可维护性的实时标准化处理体系。在多业务线、快速演进的业务环境中,提供了良好的工程支撑。
2025-05-08 11:36:51
803
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人