“一个客户,在 CRM 是张三,在电商是 Z.San,在财务系统又叫 zhangsan001。”
——你可能已经意识到,是时候建立主数据系统了。
📘 本文目录
-
什么是主数据?为什么必须治理?
-
主数据的核心领域与业务价值
-
主数据管理的四种架构模式
-
MDM 实施路径:从0到1
-
主数据落地关键:对齐、治理、服务化
-
总结与实战建议
1️⃣ 什么是主数据?为什么必须治理?
主数据(Master Data) 是企业在多个系统和业务线中都会使用的、核心且高复用的数据实体。
📌 通俗理解:
-
是“贯穿整个公司系统”的那批基础对象
-
是“名字要统一、属性要一致”的数据
🎯 典型主数据对象:
类型 | 示例 |
---|---|
客户 | 客户 ID、姓名、电话、客户等级等 |
产品 | 商品编号、名称、分类、规格、品牌等 |
组织 | 公司、部门、组织架构、法人信息等 |
供应商 | 供应商编码、联系人、地址、合同编号等 |
员工 | 工号、姓名、职位、所属部门、入职时间等 |
为什么必须治理?
-
系统割裂 → 数据不一致
-
报表混乱 → 决策口径不同
-
客户重复 → 成本、服务、风险都上升
-
数据无法打通 → 构建统一客户视图、360 度画像无从谈起
2️⃣ 主数据的核心领域与业务价值
企业中最常见的主数据领域为“五大主数据域”:
主数据域 | 常见数据对象 | 典型使用系统 |
---|---|---|
客户域 | 客户ID、标签、渠道 | CRM、订单、营销系统 |
产品域 | 商品、规格、SKU | 电商、ERP、仓储系统 |
组织域 | 部门、法人、BU | HR、OA、报表系统 |
员工域 | 工号、角色、组织 | HR、财务、审批系统 |
供应商域 | 供应商、合同、对账 | SRM、财务系统 |
✅ 业务价值:
-
构建统一客户 / 产品 / 组织视图
-
支撑数据标准化与指标一致性
-
降低数据重复率、提升复用
-
支持主数据共享服务化(微服务调用、缓存加载)
3️⃣ 主数据管理的四种架构模式
📦 常见 MDM 架构模式:
架构类型 | 说明 | 适用场景 |
---|---|---|
注册表式(Registry) | 中心存储主数据索引,数据保留在各系统 | 系统较独立,早期治理 |
协同式(Coexistence) | 主数据平台与业务系统双向同步 | 有多个权威来源 |
集中式(Centralized) | 主数据只在主数据系统维护,再下发 | 统一管理,适合新平台 |
托管式(Consolidation) | 聚合多个来源,清洗后统一管理 | 跨系统整合阶段 |
🧠 选择架构要考虑:
-
数据创建权(哪个系统主建)
-
系统间耦合程度
-
实施预算和组织准备度
4️⃣ MDM 实施路径:从 0 到 1
构建主数据管理体系,推荐遵循以下“六步法”:
🧭 主数据治理六步法:
-
主数据识别:选定客户、产品、组织等治理对象
-
字段标准定义:确定字段名、类型、规则、唯一性等
-
数据源梳理与映射:分析来源系统、字段对照关系
-
主数据建模:设计主数据模型(维度 + 属性 + 标签)
-
主数据集成:同步多源数据,构建唯一主数据视图
-
共享服务化:通过 API、缓存、共享表等方式对外提供服务
📌 工具选型参考:
场景 | 推荐工具 |
---|---|
轻量化主数据建模 | Excel + 数据字典系统(如 OneData) |
中型企业 MDM 平台 | 自建中台 + API 网关(支持缓存 & 数据打标) |
企业级主数据系统 | IBM MDM、SAP MDG、阿里 DataWorks MDM |
5️⃣ 主数据落地关键:对齐、治理、服务化
1)对齐业务和 IT 的“主数据口径”
-
明确谁主建、谁维护、谁消费
-
定义字段标准(同一个“客户类型”不能有多个说法)
2)治理机制:清洗、去重、匹配
-
多个来源合并时需要用规则 + 算法去重
-
引入 Golden Record(黄金主数据) 概念
-
设置主数据生命周期策略:创建 → 变更 → 归档
3)服务化共享机制
类型 | 示例 |
---|---|
数据服务 API | 查询客户详情、产品名称等 |
数据同步机制 | Kafka / Flink 实时同步 |
缓存中台 | Redis 加载主数据供业务系统调用 |
标签化管理 | 客户/商品维度标签治理与分发 |
✅ 总结
构建主数据体系不是简单地建立一个“客户表”,它是一项系统性工程,涉及数据治理、模型设计、平台服务、组织机制的协同。
要点 | 说明 |
---|---|
主数据识别 | 以客户、产品、组织为典型主线 |
模型设计 | 唯一标识 + 多来源映射 + 业务属性 |
系统集成 | 清洗、去重、标准化流程 |
服务共享 | 提供查询、打标、同步、缓存能力 |
治理闭环 | 定期核查数据质量、责任人归属 |
下一篇预告
下篇我们将进入数据治理九大能力域中的元数据管理,探索如何实现数据资产可追溯、可视化、可管理的全景式治理视图。