题目链接在此:点击打开链接
题型:二分
题意:
n个区间,任意两个区间不嵌套,但是可能有交集。
现进行如下操作:
区间只能在原来的基础上缩小,不能扩大,最终使得所有的区间大小相等。
问区间长度最大值。
分析:
题目需要分数表示,但是依然可以用浮点数讨巧。
仍然采用传统的方法。
先对区间排序。
0~INF二分答案,然后验证答案是否可行。
得到答案之后,需要将答案转换为分数表示。
枚举分母,范围1~n,然后求出浮点型分子,若分子接近整数,就认为找到了分数。
注意本题精度要求极高,需要使用long double,并且eps需要达到1e-10。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define eps 1e-11
using namespace std;
const int M = 100100;
int n;
struct RANGE{
int a,b;
}S[M];
bool cmp(RANGE A,RANGE B){
if(A.a == B.a) return A.b < B.b;
return A.a < B.a;
}
bool judge(long double dis){
long double pos = 0;
long double tmp;
for(int i=0;i<n;i++){
tmp = S[i].a*1.0;
pos = max(pos,tmp);
pos += dis;
if(pos > S[i].b + eps) return false;
}
return true;
}
int main(){
while(~scanf("%d",&n)){
for(int i=0;i<n;i++){
scanf("%d%d",&S[i].a,&S[i].b);
}
sort(S,S+n,cmp);
long double L = 0;
long double R = S[n-1].b + eps;
while(R - L > eps){
long double mid = (L+R) / 2.0;
if(judge(mid)) L = mid;
else R = mid;
}
int i;
for(i=1;i<=n+1;i++){
int p = (int)(L*i+0.5);
long double t = p*1.0/i;
if(fabs(t-L)<eps) break;
}
printf("%d/%d\n",(int)(L*i+0.5),i);
}
return 0;
}