引言
传统的推荐系统通常采用静态的协同过滤或内容过滤方法,难以适应用户兴趣的动态变化。本文将介绍如何利用强化学习技术构建实时自适应的推荐系统,通过与环境交互不断优化推荐策略。
问题建模
我们将推荐问题建模为马尔可夫决策过程(MDP):
- 状态(s): 用户历史行为、当前上下文
- 动作(a): 推荐的物品
- 奖励(r): 用户反馈(点击、购买等)
- 策略(π): 推荐策略
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from collections import deque
import random
class RecommenderEnv:
def __init__(self, user_data, item_data):
self.user_data = user_data
self.item_data = item_data
self.current_user = None
self.user_history = None
self.available_items = None
def reset(self, user_id):
self.current_user =