基于强化学习的实时推荐系统优化

引言

传统的推荐系统通常采用静态的协同过滤或内容过滤方法,难以适应用户兴趣的动态变化。本文将介绍如何利用强化学习技术构建实时自适应的推荐系统,通过与环境交互不断优化推荐策略。

问题建模

我们将推荐问题建模为马尔可夫决策过程(MDP):

  • 状态(s): 用户历史行为、当前上下文
  • 动作(a): 推荐的物品
  • 奖励(r): 用户反馈(点击、购买等)
  • 策略(π): 推荐策略
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from collections import deque
import random

class RecommenderEnv:
    def __init__(self, user_data, item_data):
        self.user_data = user_data
        self.item_data = item_data
        self.current_user = None
        self.user_history = None
        self.available_items = None
        
    def reset(self, user_id):
        self.current_user =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软考和人工智能学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值