阿尔法星球的专栏

让学习成为一种习惯

  • 博客(263)
  • 资源 (3)
  • 收藏
  • 关注

原创 基于卷积神经网络实现美食分类

本文探讨了基于卷积神经网络实现美食分类技术的应用场景拓展,重点聚焦于美食推荐系统集成和移动端应用适配。在美食推荐系统方面,通过个性化推荐、场景化推荐、实时推荐和跨平台推荐,显著提升了推荐系统的准确性和用户体验。在移动端应用适配方面,通过轻量级模型优化、离线识别功能、用户交互界面设计以及实时反馈与更新,使美食分类技术能够在移动设备上高效运行并提供便捷服务。这些拓展应用不仅增强了美食分类技术的实用性,也为用户带来了更加丰富和便捷的美食体验。

2025-06-25 12:53:14 23

原创 双向LSTM模型完成IMDB文本分类

本研究深入探讨了双向长短期记忆网络(Bi-LSTM)在IMDB文本分类任务中的应用。实验结果表明,Bi-LSTM模型在测试集上取得了88.5%的准确率和89%的F1分数,展现出良好的性能。Bi-LSTM通过同时学习前向和后向的上下文信息,能够更全面地捕捉文本中的语义特征,有效处理长文本序列,避免了传统RNN的梯度消失问题。研究还优化了数据预处理流程,提出了合理的超参数调整策略。未来的研究方向包括引入注意力机制、探索多语言支持、拓展跨领域应用以及模型轻量化。

2025-06-25 12:50:56 42

原创 搭建CNN卷积神经网络,实现珍稀动物检测

本文探讨了利用CNN卷积神经网络实现珍稀动物检测的挑战及解决方案。主要面临小样本学习、数据不平衡和模型泛化能力不足三大问题。针对小样本学习,采用数据增强、迁移学习和元学习方法;针对数据不平衡,采用重采样、类别权重调整和改进损失函数;针对泛化能力不足,通过数据多样性增强、正则化技术和交叉验证提升模型性能。这些方法能够有效提高CNN在珍稀动物检测任务中的准确性和鲁棒性。

2025-06-25 12:36:41 168

原创 使用TextCNN模型新闻文本分类

本文深入探讨了TextCNN模型在新闻文本分类任务中的应用现状,并提出了未来的发展方向。TextCNN凭借其高效的卷积神经网络结构,在新闻文本分类中取得了显著成果,但仍有改进空间。未来可从多尺度特征融合、结合Transformer架构、增强模型可解释性以及对抗训练提升鲁棒性等方面对TextCNN进行优化。此外,该模型的应用领域还可拓展至社交媒体舆情分析、金融领域文本分析、医疗健康领域文本处理以及智能客服与问答系统等,具有广阔的应用前景和重要的研究价值。

2025-06-25 12:03:56 34

原创 部署层技术深度剖析

DeepSeek在模型架构方面进行了诸多创新,以满足不同场景下的高效运算与精准预测需求。

2025-05-04 15:55:46 99

原创 训练层:技术优势与未来发展方向

DeepSeek的模型架构设计体现了其对效率与性能的双重追求。其采用了分层架构,底层是大规模的分布式计算框架,能够支持海量数据的并行处理。中间层是深度学习模型的核心部分,包括多层神经网络结构,每层网络都经过精心设计以提取数据中的关键特征。顶层则是应用接口,方便用户将模型集成到不同的应用场景中。这种分层架构使得DeepSeek能够灵活应对各种任务需求,同时保持高效的计算性能。

2025-05-04 15:55:30 75

原创 底层架构:技术瓶颈与发展方向

Transformer架构是DeepSeek底层技术的重要基础,其优化工作主要集中在提升计算效率和模型性能方面。通过引入稀疏注意力机制,DeepSeek将模型的计算复杂度从O(n²)降低至O(n),显著提升了处理大规模数据集的能力。例如,在处理包含10亿个词的文本数据时,优化后的Transformer架构能够将训练时间缩短约40%,同时保持模型的准确率在95%以上。

2025-05-04 15:55:08 89

原创 边缘端部署方案

模型架构创新:DeepSeek的轻量化模型设计、多模态融合架构以及自适应动态架构,使其在边缘端部署时能够有效应对资源受限、数据复杂多模态以及动态网络环境等问题,显著提升了模型的运行效率、准确性和稳定性。训练优化技术:分布式训练框架、迁移学习与预训练、自适应学习率调整以及数据增强与正则化等技术的应用,大幅提高了模型的训练速度、适应性、精度和泛化能力,为边缘端部署提供了高质量的模型基础。云边协同方案。

2025-05-04 15:54:30 475

原创 参数共享技术

参数共享是深度学习中一种重要的技术手段,指的是在神经网络的不同部分(如不同的层、不同的模块或不同的模态)之间共享同一组参数,而不是为每个部分独立地学习一组参数。减少模型参数量:通过共享参数,可以显著减少模型的参数总数,从而降低模型的复杂度和存储需求。例如,在传统的卷积神经网络(CNN)中,卷积核的参数在整个输入图像的不同位置上是共享的,这使得模型能够在处理大规模图像数据时,仍然保持相对较小的参数量,避免了参数数量的爆炸式增长。提高模型的泛化能力。

2025-05-04 15:54:03 97

原创 混合精度训练框架

混合精度训练是一种在深度学习模型训练过程中,结合使用单精度浮点数(FP32)和半精度浮点数(FP16)的训练方法。其基本原理是利用半精度浮点数在计算速度和内存占用方面的优势,同时通过适当的策略确保模型训练的精度和稳定性。具体而言,半精度浮点数的存储空间仅为单精度浮点数的一半,计算速度也更快,但其数值范围和精度相对较低。因此,在混合精度训练中,关键的计算步骤(如前向传播)使用半精度浮点数,而对精度要求较高的部分(如梯度更新)则使用单精度浮点数。

2025-05-04 15:53:37 109

原创 PTX层指令优化:性能提升与应用效果分析

GPU架构是一种并行计算架构,其设计初衷是为了图形渲染,但随着技术的发展,它在通用计算领域也得到了广泛应用。GPU由多个流处理器(Streaming Multiprocessors,SM)组成,每个SM包含多个执行单元,能够同时处理大量线程。这种架构使得GPU在处理并行任务时具有显著优势,尤其是在深度学习、科学计算等领域。PTX(Parallel Thread Execution)层是NVIDIA GPU架构中的一个关键抽象层,它位于CUDA编程模型和GPU硬件之间。

2025-05-04 15:53:08 300

原创 自动验证机制:底层技术与应用实践

自动验证机制是指在人工智能系统中,通过自动化手段对模型的性能、行为和结果进行检查、评估和确认的过程。它通常包括对模型的准确性、可靠性、安全性、公平性等多个方面的验证。在DeepSeek的底层技术中,自动验证机制是确保模型质量和系统稳定性的关键环节。例如,DeepSeek的自动验证机制可以实时监测模型在不同数据集上的表现,自动检测模型是否存在偏差或异常行为,并及时调整模型参数或发出警报。

2025-05-04 15:52:43 61

原创 零样本强化学习(RL-Zero)技术解析

DeepSeek是一家专注于人工智能前沿技术研发的公司,其发展历程体现了对技术创新的持续追求。

2025-05-04 15:52:05 79

原创 混合专家系统(MoE)架构创新:挑战与解决方案

DeepSeek的底层技术混合专家系统(MoE)架构是一种创新的模型结构,其核心由多个专家模块和一个门控机制组成。每个专家模块负责处理特定类型的输入数据或特定的任务子集,这些专家模块可以是小型的神经网络或其他类型的计算单元。例如,在处理自然语言处理任务时,不同的专家模块可以专注于语法分析、语义理解或情感分析等不同的子任务。门控机制则根据输入数据的特征动态地选择合适的专家模块进行处理,从而实现高效的计算资源分配和任务处理。这种架构设计使得模型能够更好地适应多样化的任务需求,提高模型的灵活性和性能。

2025-05-04 15:51:06 293

原创 扩散模型基础—理论与实践

扩散模型作为一种新兴的生成模型,在理论与实践方面均取得了显著进展,展现出强大的生成能力和广阔的应用前景,但同时也面临着一些挑战。

2025-04-17 13:48:32 358

原创 基于BiSeNet的表面缺陷分割实战

基于BiSeNet的表面缺陷分割技术在多个工业领域具有广泛的应用前景,尤其是在电子制造、汽车制造和航空航天等行业,表面缺陷检测是质量控制的关键环节。电子制造:在电子制造领域,表面缺陷检测主要针对芯片、电路板等零部件。例如,芯片表面的划痕、凹坑等缺陷可能会影响其性能和可靠性。BiSeNet模型能够快速准确地检测出这些微小缺陷,其检测精度可达微米级别。在实际生产中,BiSeNet模型被应用于在线检测系统,能够在生产线的实时监控中快速识别缺陷,缺陷检测速度达到每秒处理10张图像以上,显著提高了生产效率和产品质量。

2025-04-17 13:43:47 104

原创 SSE实战:构建在线人数实时推送系统

服务器发送事件(Server-Sent Events,SSE)是一种允许服务器向浏览器推送实时更新的技术。它基于HTTP协议,通过建立一个持久连接,使服务器能够主动向客户端发送数据。messagemessage\n\n客户端会依次接收到这两条消息,并触发两次message事件。

2025-04-17 12:52:18 69

原创 Java中的ABA问题:多线程编程的“隐形杀手”

ABA问题是指在多线程环境中,一个线程读取到变量的值为A,然后在该线程进行操作的过程中,变量的值被其他线程修改为B,之后又被修改回A。当第一个线程再次读取变量值时,虽然值仍然是A,但变量实际上已经经历了A-B-A的变化过程。这种情况下,如果第一个线程基于变量值未改变的假设进行操作,可能会导致错误的结果。ABA问题的出现背景与现代计算机系统的多核多线程架构密切相关。随着多核处理器的普及,多线程编程成为提高程序性能和资源利用率的重要手段。

2025-04-16 14:51:51 123

原创 Java线程生命周期:从创建到终止的全解析

在Java中,Thread类是创建线程的基础。通过继承Thread类并重写run方法,可以定义线程的执行逻辑。这种方式简单直接,但缺点是无法实现多继承,因为Java不支持多继承,而线程类已经继承了Thread。

2025-04-16 14:49:25 263

原创 深度学习之图像分割—理论与实践

图像分割是计算机视觉中的一个重要任务,它将图像划分为多个具有相似属性的区域或对象。图像分割的目的是将图像中的目标对象与背景分离,从而为后续的图像分析和处理提供基础。图像分割在医学图像分析、遥感图像处理、自动驾驶等领域有着广泛的应用。医学图像分析:在医学领域,图像分割用于分割出医学图像中的器官、组织和病变区域。例如,在磁共振成像(MRI)图像中,通过图像分割可以准确地分割出大脑的不同区域,如灰质、白质和脑室等。这有助于医生对疾病进行诊断和治疗。

2025-04-05 12:05:26 63

原创 深度学习之CNN模型设计—理论与实践

卷积神经网络(CNN)是一种深度学习架构,广泛应用于图像识别、语音识别等领域。其基本架构由输入层、多个卷积层和池化层交替组成的特征提取层、全连接层以及输出层构成。输入层接收原始数据,如图像的像素矩阵。卷积层和池化层是CNN的核心,负责提取数据的局部特征和降低特征维度。全连接层将提取到的特征进行整合,输出层则根据任务需求给出最终结果,如分类概率或回归值。例如,在经典的LeNet-5网络中,其架构包括两个卷积层、两个池化层和三个全连接层,能够对手写数字图像进行准确分类,准确率超过99%。

2025-04-05 12:05:00 87

原创 基于Softmax回归完成鸢尾花分类任务

鸢尾花数据集(Iris dataset)是机器学习领域中一个经典的多分类数据集,常用于验证分类算法的性能。该数据集包含150个样本,每个样本有4个特征,分别是花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)和花瓣宽度(petal width)。这些样本分为3个类别,分别是山鸢尾(Iris Setosa)、变色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica),每个类别各有50个样本。样本数量适中。

2025-04-01 13:04:08 291

原创 基于前馈神经网络完成鸢尾花分类任务

鸢尾花分类任务是机器学习领域的一个经典入门级任务,它具有重要的研究价值和实际意义。鸢尾花数据集由英国统计学家和生物学家罗纳德·费舍尔(Ronald Fisher)于1936年提出,用于展示线性判别分析技术。该数据集包含150个样本,分为3个类别,每个类别有50个样本。每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度,这些特征均为数值型数据。通过对这些特征的分析和建模,可以实现对鸢尾花的分类。鸢尾花分类任务在实际应用中具有广泛的意义。

2025-04-01 12:50:38 143

原创 深度学习之视觉Transformer—理论与实践

深度学习是机器学习的一个子领域,它基于人工神经网络,通过多层非线性变换来学习数据的高级特征和抽象表示。近年来,深度学习在计算机视觉、自然语言处理、语音识别等多个领域取得了突破性进展,推动了人工智能技术的快速发展。发展历史:深度学习的发展历程可以追溯到 20 世纪 40 年代的人工神经网络研究。2006 年,Hinton 等人提出了深度信念网络(DBN),标志着深度学习的正式兴起。

2025-04-01 12:29:08 197

原创 深度学习之目标检测—理论与实践

目标检测是计算机视觉中的一个重要任务,其目标是在图像或视频中识别和定位特定的物体。目标检测不仅需要识别物体的类别,还需要确定物体在图像中的位置,通常以边界框的形式表示。任务定义:目标检测的任务可以分为两个主要部分:物体分类和物体定位。物体分类是指识别图像中的物体属于哪个类别,而物体定位则是确定物体在图像中的具体位置。例如,在自动驾驶场景中,目标检测需要识别出道路上的行人、车辆等物体,并准确地定位它们的位置,以便车辆能够做出正确的决策。应用场景。

2025-04-01 12:28:03 199

原创 基于线性回归的波士顿房价预测研究

线性回归是一种统计学中常用的预测方法,其核心是通过建立一个或多个自变量(解释变量)与因变量(被解释变量)之间的线性关系模型,来对因变量进行预测或解释。例如,在波士顿房价预测中,我们可以将房屋的特征(如房间数量、面积等)作为自变量,房价作为因变量,通过线性回归模型来探究这些特征与房价之间的关系,进而预测房价。

2025-03-30 12:32:16 197

原创 图神经网络在智能推荐中的应用:电商与社交网络案例分析

推荐系统是一种通过分析用户的历史行为和偏好信息,为用户提供个性化推荐内容的信息过滤系统。其主要目标是帮助用户在海量的信息中快速找到他们可能感兴趣的内容,提高用户的信息获取效率和满意度,同时也为商家或内容提供者增加用户粘性和商业价值。用户需求满足:在互联网时代,用户面临着海量的信息选择,如商品、影视、音乐等。推荐系统能够根据用户的兴趣和偏好,精准地为用户推荐他们可能感兴趣的内容,减少用户的信息筛选成本。

2025-03-29 13:51:15 326

原创 使用文心大模型ERNIE-ViLG生成图片

细粒度知识融合:ERNIE-ViLG 依托百度庞大的知识图谱,实现了细粒度的知识融合,能够精准理解文本描述中的语义信息,并将其与丰富的知识结构相结合,生成具有真实感和细节丰富度的图像。这种知识融合能力使其在处理复杂场景和跨领域知识时表现出色,显著提升了图像生成的质量和准确性。混合降噪专家模型:该模型通过引入多种降噪策略和多个专家模型的协同机制,有效减少了生成过程中的噪声干扰,显著提高了图像生成的逼真度、细节丰富度和整体视觉效果。

2025-03-29 12:37:54 301

原创 使用神经网络分析电影评论的正能量和负能量

在电影评论情感分析领域,有多个常用的数据集可供选择,这些数据集各有特点,为研究提供了丰富的资源。IMDb数据集:这是最著名的电影评论数据集之一,包含约50,000条来自互联网电影数据库(IMDb)的评论,每条评论都被标记为正面或负面情感。该数据集的评论内容丰富多样,涵盖了不同类型的电影和观众的观点,具有较高的代表性。研究表明,使用IMDb数据集训练的情感分析模型在其他类似数据集上的迁移性能较好,其情感分布较为均衡,正面和负面评论各占一半,适合用于二分类情感分析任务。Rotten Tomatoes数据集。

2025-03-29 12:36:44 196

原创 基于卷积神经网络(CNN)的历史文献手写数字识别研究

手写数字识别技术在众多领域有着广泛的应用,是计算机视觉和模式识别领域的重要研究方向之一。在邮政行业,通过手写数字识别技术可以自动识别邮件上的邮政编码和地址编号,大大提高了邮件分拣的效率和准确性。据统计,采用先进的手写数字识别系统后,邮件分拣的错误率可以降低至1%以下,而分拣速度则能提升30%以上。在金融领域,银行支票处理过程中需要识别支票上的金额数字,手写数字识别技术的应用使得支票处理更加高效、安全,减少了人工审核的工作量和出错概率。

2025-03-27 12:45:54 115

原创 基于卷积神经网络(CNN)的手写数字识别研究——以 MNIST 数据集为例

MNIST数据集是手写数字识别领域中最为经典和广泛使用的数据集之一,它为研究人员提供了一个标准化的实验平台,推动了该领域的快速发展。数据集规模:MNIST数据集包含70,000张手写数字图像,其中60,000张用于训练,10,000张用于测试。每张图像的大小为28×28像素,灰度值范围为0到255。这些图像涵盖了从0到9的10个数字类别,每个类别都有大量的样本,确保了数据集的多样性和代表性。数据来源。

2025-03-26 13:47:00 108

原创 深度学习与神经网络实战前沿技术趋势洞察与分析

深度学习和神经网络技术正在不断发展和创新,不仅在技术上取得突破,还在跨领域融合和创新实践中展现出巨大的潜力。然而,技术的发展也带来了伦理和社会问题,需要在推进技术进步的同时,充分考虑其对个人隐私、社会公平等方面的影响,确保技术向善发展。

2025-01-20 12:14:52 479

原创 实现一个用于消除背景噪声的语音增强系统

语音增强系统的实际应用场景广泛,涵盖了从个人使用到专业领域的多种环境。移动通信:在移动电话和语音消息应用中,语音增强系统可以显著提高通话质量,尤其是在信号弱或背景嘈杂的环境中。根据全球移动通信系统协会(GSMA)的数据,移动电话用户超过50亿,语音增强技术的应用直接影响着这些用户的通话体验。会议和远程工作:在会议和远程工作场景中,语音增强系统可以帮助参与者更清晰地听到发言者的声音,提高会议效率。例如,Zoom、Microsoft Teams等视频会议平台的语音处理模块中就集成了语音增强技术。车载系统。

2024-12-27 11:52:53 115

原创 开发一个能够识别和分类环境声音事件的系统

准确率(Accuracy):系统正确识别和分类声音事件的比例,是评估系统性能的主要指标。精确率(Precision):在所有被识别为特定类别的声音事件中,实际属于该类别的比例。召回率(Recall):在所有实际发生的声音事件中,被系统正确识别的比例。F1分数(F1 Score):精确率和召回率的调和平均值,用于衡量系统的综合性能。鲁棒性(Robustness):系统在不同环境噪声水平下保持性能稳定的能力。实时性(Real-time Performance)

2024-12-27 11:52:39 119

原创 实现一个基于深度学习的语音合成模型

语音合成技术的发展经历了多个阶段,从最初的基于规则的方法到现代的基于深度学习的技术,每一次技术的革新都极大地推动了语音合成领域的发展。早期方法:早期的语音合成技术主要基于规则,如基于形式的合成和基于规则的合成,这些方法依赖于语言学家制定的规则来生成语音。这些方法虽然在某些情况下能够产生可理解的语音,但往往缺乏自然度和表现力。参数合成方法:随着数字信号处理技术的发展,参数合成方法成为主流,如线性预测编码(LPC)和PSOLA算法。

2024-12-26 11:51:53 149

原创 开发一个自动文本摘要系统

Seq2Seq模型:序列到序列模型,通过编码器-解码器架构生成摘要,适用于生成流畅的文本。BERT模型:利用预训练的BERT模型,捕捉文本的深层次语义信息,生成高质量的摘要。GPT模型:基于Transformer的预训练模型,能够生成连贯且相关的文本,适用于开放域的摘要生成。摘要生成模块是自动文本摘要系统的核心环节,其架构设计需确保摘要的准确性和流畅性。Seq2Seq子模块:采用编码器-解码器架构,编码器负责理解输入文本,解码器负责生成摘要,适用于生成流畅的文本序列。BERT子模块。

2024-12-26 11:51:38 215

原创 实现一个能够生成连贯文本的生成模型

文本生成模型是一种自然语言处理(NLP)技术,旨在根据给定的输入生成连贯、有意义的文本输出。这类模型通过学习大量的文本数据,捕捉语言的语法和语义结构,以生成高质量的自然语言文本。目标是构建一个能够预测下一个词或序列的模型,不仅能够生成文本,而且能够确保生成的文本在逻辑上连贯、语法上正确,并且与给定的上下文或输入相关。

2024-12-25 11:58:08 117

原创 开发一个用于社交媒体文本的情感分析模型

本章节对社交媒体文本情感分析模型的开发过程进行了全面的概述。从数据收集与预处理、特征提取方法、情感分析模型构建,到模型训练与优化,再到模型评估与应用部署,我们详细阐述了每一个步骤的关键技术和实现效果。

2024-12-25 11:57:48 115

原创 探索情感分析的细粒度分类

细粒度情感分析作为自然语言处理领域的一个重要分支,其研究和应用正迅速发展。从定义与重要性、发展历程、关键任务,到技术方法、挑战与问题,再到应用场景和未来趋势,本报告全面梳理了细粒度情感分析的各个方面。

2024-12-24 11:26:37 289

原创 研究多语言翻译和多模态翻译

多模态翻译是指在翻译过程中不仅考虑语言文字,还涉及图像、声音、手势等多种符号系统的转换与信息传递。这一概念在多模态话语分析理论的基础上发展而来,后者认为交际过程中意义的构建是通过多种模态的互动来实现的。定义:多模态翻译扩展了传统翻译的范畴,它不仅包括语言文字的转换,还涉及到视觉、听觉等非语言模态的翻译。这种翻译方式需要译者理解和转换源材料中的所有模态信息,以确保在目标语言和文化中准确、全面地传达原意。理论基础:多模态翻译的理论基础主要来源于系统功能语言学、认知语言学和社会符号学。

2024-12-24 11:26:21 601

基于Qt的数据处理和数据分析软件

在数据处理过程往往有很多重复性的工作,尤其针对科研实验数据,有可能要面对n组数据,每组数据的清洗抽取方式基本是一样的,因此我希望一个数据处理软件应该是带有工作流功能的,当然python是很容易实现上述功能,但要求有一定的开发基础且要熟悉一些库才能得心应手 python的pandas、numpy、scipy是数据处理的三大利器,通过python进行数据处理过程,如此多的数据清洗方法,除非你把整个文档浏览一遍,否则你很难想起他们,因此一个交互式的数据清洗工具是很有必要的,把功能通过GUI明确的展现给用户,这样数据处理过程不需要长时间的翻阅文档 最后也是我用matlab和python这类数据处理工具最头疼的一点,就是数据可视化,虽然matlab和python能做出很漂亮的图,但细微的调节非常令人抓狂,例如要调整一个文本的位置,交互式的设计你只需要拖动一下鼠标,但在脚本语言里你要指定它的坐标,如果图片非常大,渲染时间比较久,那么移动一个文本到你想要的地方是一件令人非常抓狂的事情,而且matlab或者matplotlib的数据可视化函数有多有细,每次操作都要查阅半天文档 ...

2024-11-06

华为校园招聘编程试题汇总

华为校园招聘编程试题汇总

2024-10-29

使用react框架 借助umi搭建的纯净版快速开发平台

介绍 使用 react 框架 借助 umi 搭建的纯净版快速开发平台 springcloud-base 的配套前端项目 springcloud-base https://gitee.com/ben-bo-ba/springcloud-base

2024-06-20

neural-network-learning-master.zip 神经网络学习

介绍 各种网络学习及实践 软件架构 使用Pytorch进行训练

2024-06-20

SpringCloud项目,Leo微服务工程的总体框架

核心组件: Nacos作为注册中心、配置中心 Apache Dubbo作为服务调用(RPC)框架 Seata 解决分布式事务 网关使用Spring Cloud Gateway,集成Sentinel熔断限流 使用RocketMQ消息队列 使用Spring Cloud Sleuth + ZipKin 的链路追踪 使用ElasticSearch全文搜索

2024-06-07

本人的南京大学操作系统实验课程加docker环境

操作系统实验

2024-06-07

data-structure-demos-hans-main.zip

用C++编写Python扩展的入门项目。实现了一些常用的数据结构:树状数组、二分查找……

2024-06-07

aim-develop.zip

Aim是一套基于Netty的消息JAVA推送框架,可应用于信令推送,即时聊天,移动设备指令推送等领域。开发者可沉浸于业务开发,不用关心消息通道链接,消息编解码协议等繁杂处理;开源技术构建,易于扩展和使用,并完美支持集群部署支持海量链接,目前支持websocket,android,ios,桌面应用,系统应用等多端接入持,可应用于移动应用,物联网,智能家居,嵌入式开发,桌面应用,WEB应用即时消服务。

2024-06-07

kbgress-master.zip

它是kbnet开发框架的基础项目,为程序开发提供基础保障,如权限控制、令牌颁发和验证、网络安全、分布式计算和存储、工具类库等等。

2024-06-06

MeEdu-main.zip

MeEdu 是一款基于 PHP 开发的线上网校系统。支持线上点播 | 知识付费 | 网校装修 | 数据统计 | 会员模块 | 角色管理等丰富功能。MeEdu 采用前后端分离模式,覆盖 PC | H5 端口。特点:系统稳定 | 功能丰富 | 界面优美 | 持续迭代。截止目前,已超过 1000+ 个人/企业用户选用 MeEdu 搭建了他们的独立网校平台。

2024-06-06

black-vue-guidebook-main.zip

Vue 知识图谱 关于用法、响应式原理、编译原理以及生态

2024-06-06

snap7 PLC 通信库的 Python 包装器

关于 这是 snap7 的基于 ctypes 的 Python 包装器。Snap7 是一款开源、32/64 位、多平台以太网通信套件,用于与西门子 S7 PLC 进行本地交互。 Python-snap7 已在 Windows、Linux 和 OS X 上使用 Python 3.9+ 进行了测试。 完整文档可在阅读文档中找到。 安装 如果您在 Intel x64 或 ARM 64 兼容平台上运行 Windows、Mac OS X 或 GNU/Linux,则可以使用二进制轮安装: $ pip install python-snap7 否则,请阅读在线安装文档。

2024-06-06

用 Express 和 Vue3 搭建的 ChatGPT 演示网页

先决条件 节点 node需要版本^16 || ^18 || ^19(node >= 14需要安装fetch polyfill),使用nvm管理多个本地node版本 node -v 全国公共管理委员会 如果你尚未安装pnpm npm install pnpm -g 填写密钥 获取Openai Api Key或accessToken填写本地环境变量转至简介

2024-06-05

student-administration-master.zip

学生管理系统(适合c语言入门学习) Student Management System (Suitable for Beginner C Language Learning)

2024-06-05

StudentInfoManager-master.zip

这是一个基于 C 语言开发的学生信息管理系统,设计精良、界面友好,操作简便且优雅。系统提供了高效的数据管理功能,让用户能够轻松添加、修改和删除学生信息,是个很好的学习项目。

2024-06-05

采用VUE3+Nuxt3框架开发,专门为企业定制的SEO官方网站模板

1、定框架的大体方向。是选择Vue、React、Angular还是其他的框架,这个基本都是根据开源社区的活跃度和开发人员的技能掌握来决定。为什么说开源社区很重要呢?一方面是框架有缺陷会及时修复,另一方面是我们遇到问题之后很容易就能找到解决方案,如果说你遇到的问题是从来没有出现过的,那么恭喜你,你已经成为这款框架中极为顶尖的存在了! 推荐VUE 2、UI框架的选择。我们当然可以自己手写html和CSS,但是对于开发人员来说会耗费极大的时间去造轮子,从效率来说也很低。所以我们需要寻找一款适合自己的UI框架,美观、使用简单、拥抱前端框架(vue、react等)。还有就是,如果考虑到官网最SEO的情况,最好使用Nuxt3 推荐vuetify、Tailwindcss、Nuxt3.这些都需要在前期考虑,开发到一半再插入可能会动摇整个项目根基(要是报错就爽歪歪了)。 3、如果需要后端接口,那么Axios、Pinia也是必不可少的插件,如果有国际化的要求,让你的网站走向世界,那么加入i18n是一个不错的选择。 4、其他的工具类插件:day.js、useVue

2024-06-05

文件快递柜-轻量 FileCodeBox-Lite 匿名口令分享文本,文件,像拿快递一样取文件

主要特色 轻量简洁:Fastapi+Sqlite3+Vue2+ElementUI 轻松上传:复制粘贴,拖拽选择 多种类型:文本,文件 防止爆破:错误次数限制 防止滥用:IP限制上传次数 口令分享:随机口令,存取文件,自定义次数以及有效期 国际化:支持中文和英文 匿名分享:无需注册,无需登录 管理面板:查看所有文件,删除文件 一键部署:docker一键部署 自由拓展:S3协议、本地文件流,可根据需求在storage文件中新增存储引擎 简单明了:适合新手练手项目

2024-06-04

toBeBetterJavaer-master.zip

一份通俗易懂、风趣幽默的Java学习指南,内容涵盖Java基础、Java并发编程、Java虚拟机、Java企业级开发、Java面试等核心知识点。学Java,就认准二哥的Java进阶之路

2024-06-04

Digital-image-processing-system-main.zip

本系统基于MATLAB 的图像处理工具箱和图形用户界面(GUI)设计与实现,构建了一个面向对象且高度可视化的图像处理操作系统,该系统实现了图像增强、图像变换、图像滤波、图像分割、边缘检测等内容

2024-06-04

自动驾驶规划控制常用算法c++代码实现

项目依赖 本项目在Ubuntu 20.04下运行,windows下尚未尝试过,因此推荐使用Ubuntu系统。 - python3 - matplotlib - cmake - Eigen cmake的安装直接终端运行 sudo apt install cmake 如果在项目编译时报cmake版本低的错误,可参考该 博客 升级cmake。 对cmake操作不不够熟悉的同学可以先参考文档 学习。 Eigen在Linux下的安装直接使用命令 sudo apt-get install libeigen3-dev Eigen库采用模板编程技术,仅由一些头文件组成,运行速度快。用cmake管理项目的时候,只需要在CMakeLists.txt里面添加头文件的路径即可: find_package(Eigen3 REQUIRED) include_directories(${EIGEN3_INCLUDE_DIR}) ...

2024-06-04

网络工程网络设备选型与配置方案试题解析:涵盖交换设备、网络协议及安全设备的应用场景与配置要点

内容概要:本文档为《网络设备选型与配置方案试题及答案》,涵盖多项选择题、判断题、简答题和论述题四个部分。多项选择题涉及网络设备分类、协议层级、功能用途等;判断题检验对网络设备基本特性的理解;简答题探讨选型考虑因素、VLAN概念及其作用、配置关键步骤、冗余设计目的及实现;论述题则深入讨论成本与性能的平衡策略以及配置过程中的实际问题与解决方法。; 适合人群:从事网络工程、信息技术管理等相关领域的技术人员,特别是初学者或有一定经验但希望巩固基础知识的专业人士。; 使用场景及目标:①作为培训教材,帮助学员掌握网络设备的基础理论和实际操作技能;②用于自我评估,检验个人对网络设备选型与配置的理解程度;③为实际项目中的设备选型和配置提供参考依据。; 其他说明:文档不仅提供了详细的题目解析,还结合了实际案例进行分析,有助于读者更好地理解和应用所学知识。建议读者在学习过程中注重理论联系实际,多做练习题,并结合具体应用场景加深理解。

2025-04-17

Warm-Flow工作流

Warm-Flow国产工作流引擎,其特点简洁轻量,五脏俱全,可扩展,是一个可通过jar引入设计器的工作流。 简洁易用:只有7张表,代码量少,可快速上手和集成 审批功能:支持通过、退回、任意跳转、转办、终止、会签、票签、委派和加减签、互斥和并行网关 监听器与流程变量:支持四种监听器,可应对不同场景,灵活可扩展,参数传递,动态权限 流程图:流程引擎自带流程图,可在不集成流程设计器情况下使用 流程设计器:可通过jar包形式快速集成到项目,减少繁琐代码搬运和适配 条件表达式:内置常见的和spel条件表达式,并且支持自定义扩展 办理人变量表达式:内置${handler}和spel格式的表达式,可满足不同场景,灵活可扩展 orm框架扩展:目前支持MyBatis、Mybatis-Plus、Mybatis-Flex和Jpa,后续会由社区提供其他支持,扩展方便 数据库支持:目前支持MySQL 、Oracle 和PostgreSQL,后续会继续支持其他数据库或者国产数据库 多租户与软删除:流程引擎自身维护多租户和软删除实现,也可使用对应orm框架的实现方式 同时支持spring和solon

2025-02-27

软件测试工程师基础类面试题及参考答案.doc

软件测试面试题

2025-02-27

deepseek4j (DeepSeek Java SDK)

deepseek4j 是面向 DeepSeek 推出的 Java 开发 SDK,支持 DeepSeek R1 和 V3 全系列模型。提供对话推理、函数调用、JSON结构化输出、以及基于 OpenAI 兼容 API 协议的嵌入向量生成能力。通过 Spring Boot Starter 模块,开发者可以快速为 Spring Boot 2.x/3.x 以及 Solon 等主流 Java Web 框架集成 AI 能力,提供开箱即用的配置体系、自动装配的客户端实例,以及便捷的流式响应支持。 特性 完整的 DeepSeek API 支持,支持返回思维链和会话账单 支持 WebSearch 联网搜索 支持自定义连接参数、代理配置、超时设置、请求响应日志 Reactor 响应式支持,简化流式返回开发

2025-02-26

G6图可视化引擎 v5.0.43

G6 是一个图可视化引擎。它提供了图的绘制、布局、分析、交互、动画等图可视化的基础能力。旨在让关系变得透明,简单。让用户获得关系数据的 Insight。基于 G6,用户可以快速搭建自己的 图分析 或 图编辑 应用。

2025-02-26

PikaPython跨平台的超轻量级嵌入式 Python 引擎

python

2025-02-26

Bootstrap Blazor 组件库 Bootstrap Blazor 是一套基于 Bootstrap 和 Blazor 的企业级组件库

项目介绍 Blazor 是一个使用 .NET 生成交互式客户端 Web UI 的框架: 使用 C# 代替 JavaScript 来创建丰富的交互式 UI。 共享使用 .NET 编写的服务器端和客户端应用逻辑。 将 UI 呈现为 HTML 和 CSS,以支持众多浏览器,其中包括移动浏览器。 使用 .NET 进行客户端 Web 开发可提供以下优势: 使用 C# 代替 JavaScript 来编写代码。 利用现有的 .NET 库生态系统。 在服务器和客户端之间共享应用逻辑。 受益于 .NET 的性能、可靠性和安全性。 始终高效支持 Windows、Linux 和 macOS 上的 Visual Studio。 支持 Net5 以一组稳定、功能丰富且易用的通用语言、框架和工具为基础来进行生成。 本项目是利用 Bootstrap 样式进行封装的 UI 组件库

2025-02-16

Dify 是一个易用的 LLMOps 平台,旨在让更多人可以创建可持续运营的原生 AI 应用

系统要求 在安装 Dify 之前,请确保您的机器满足以下最低系统要求: CPU >= 2 Core RAM >= 4 GiB 快速启动 启动 Dify 服务器的最简单方法是运行我们的 docker-compose.yml 文件。在运行安装命令之前,请确保您的机器上安装了 Docker 和 Docker Compose: cd docker cp .env.example .env docker compose up -d 运行后,可以在浏览器上访问 http://localhost/install 进入 Dify 控制台并开始初始化安装操作。 自定义配置 如果您需要自定义配置,请参考 .env.example 文件中的注释,并更新 .env 文件中对应的值。此外,您可能需要根据您的具体部署环境和需求对 docker-compose.yaml 文件本身进行调整,例如更改镜像版本、端口映射或卷挂载。完成任何更改后,请重新运行 docker-compose up -d。您可以在此处找到可用环境变量的完整列表。

2025-02-16

基于 Vue3 + Typescript 的低代码页面可视化设计器 内置低代码引擎、渲染器和代码生成器,面向前端开发者,开箱即用 无缝嵌入本地开发工程,不改变前端开发流程和编码习惯

特性 流行的技术栈: Vue3、Typescript、Vite、EelementPlus、VueUse、Axios、ECharts、Lodash、Monaco Editor、Prettier 等。 自由个性化: 低代码设计器支持源码级别的自定义,可轻松适配个性化需求,理论上写代码开发能实现的在设计器上都能完成。 低学习成本: 专为前端开发者设计,无需改变您熟悉的前端开发流程和编码习惯。只需了解Vue,即可轻松上手,实现无缝对接,真正做到零学习成本。 高扩展性: 配备了先进的内置低代码引擎,通过配置化构建方式,赋予您对所有部件的完全自定义能力。您可以单独运用此引擎,自主打造专属的低代码平台。 无污染,可二开: 设计器无缝嵌入本地项目开发环境,既安全又便捷,轻松接入。同时,采用创新的设计器和渲染器分离模式,确保项目代码保持纯净,不受任何污染,并且产物支持二次开发。 物料丰富: 此外,还内置了多款常用、功能强大的组件库以及丰富的页面模板,不仅支持高度定制,还提供了可复用的区块组件,助您高效构建出色的应用。

2025-02-16

基于Spring Boot 3.4、 Spring Cloud 2024 & Alibaba、 SAS OAuth2 的微服务RBAC 权限管理系统

系统说明 基于 Spring Cloud 、Spring Boot、 OAuth2 的 RBAC 企业快速开发平台, 同时支持微服务架构和单体架构 提供对 Spring Authorization Server 生产级实践,支持多种安全授权模式 提供对常见容器化方案支持 Kubernetes、Rancher2 、Kubesphere、EDAS、SAE 支持 分支说明 jdk17: java17/21 + springboot 3.4 + springcloud 2024 master: java8 + springboot 2.7 + springcloud 2021

2025-01-20

比libevent/libuv/asio更易用的国产网络库,用来开发 TCP/UDP/SSL/HTTP/WebSocket/MQTT 客户端/服务端

跨平台(Linux, Windows, macOS, Android, iOS, BSD, Solaris) 高性能事件循环(网络IO事件、定时器事件、空闲事件、自定义事件、信号) TCP/UDP服务端/客户端/代理 TCP支持心跳、重连、转发、多线程安全write和close等特性 内置常见的拆包模式(固定包长、分界符、头部长度字段) 可靠UDP支持: WITH_KCP SSL/TLS加密通信(可选WITH_OPENSSL、WITH_GNUTLS、WITH_MBEDTLS) HTTP服务端/客户端(支持https http1/x http2 grpc) HTTP支持静态文件服务、目录服务、正向/反向代理服务、同步/异步API处理器 HTTP支持RESTful风格、路由、中间件、keep-alive长连接、chunked分块、SSE等特性 WebSocket服务端/客户端 MQTT客户端

2025-01-09

SCServoSDK飞特总线舵机接口库

SMServoBCL_keil_f405_hal_220330.7z 1、stm32f405 keil hal sdk增加同步读功能 2、stm32f405 keil hal sdk增加总线切换延时 SMServoBCL_keil_f103_220329.7z 1、stm32f103 keil sdk增加同步读功能 2、stm32f103 keil sdk增加总线切换延时 SMServoBCL_keil_f405_220329.7z 1、stm32f405 keil sdk增加同步读功能 2、stm32f405 keil sdk增加总线切换延时 3、SDK读超时使用指令计数方法替换系统定时器(不占用系统定时器)

2024-12-30

AT24CXX 软件包提供了at24cxx 系列 EEPROM 基本功能 本文介绍该软件包的基本读写功能,以及 Finsh/MSH 测试命令等

AT24CXX 软件包提供了at24cxx 系列 EEPROM 基本功能。本文介绍该软件包的基本读写功能,以及 Finsh/MSH 测试命令等。 目前已在 at24c02, at24c512验证通过

2024-12-30

Luat-Lua-Air724U LuatOS-Air

本项目是基于合宙Cat1模块的Lua语言开发环境、开发简单快速、上手方便、无需学习复杂的语法。相较于传统MCU+蜂窝模组开发方式,有如下优势: 1,替代MCU+蜂窝模组的架构,只需要蜂窝模组, 并最大限度发挥蜂窝模组的各项功能; 2,相较于普通MCU,模组自带的处理器性能更强,外设更丰富; 3,功能完善:支持常见通信协议、云平台接入、常用外设和传感器、FOTA等常用功能; 4,丰富例程,完善的注释和文章指导,开发更加容易上手; 5,Lua脚本更加高效,无需编译直接运行,提高开发效率; 6,无需处理复杂AT逻辑,Lua API接口更符合程序开发思维。

2024-12-30

Altium Designer集成库带3D封装,发展自嘉立创SMT元器件库

本自用集成库发展自 嘉立创SMT样品贴片中可贴片元器件列表_基础库,适用于Altium,元器件大部分有3D模型

2024-12-30

专为MCU项目开发提速的代码框架

BabyOS适用于MCU项目,她是一套管理功能模块和外设驱动的框架。 对项目而言,缩短开发周期。项目开发时选择适用的功能模块及驱动。直接进入功能代码编写的阶段。 对开发而言,减少重复工作。调试过的功能模块和驱动代码放入BabyOS中管理,以后项目可以直接使用。

2024-12-30

OpenCV-Studio OpenCV工作室

项目说明 专注于OpenCV功能的可视化操作,包含大多数OpenCV的常用功能; 开发目的: 1、探索OpenCV常用图像算法; 2、探索深度学习模型OnnxRuntime部署; 3、探索WPF Canvas及其与图像算法的结合应用; 4、探索MahApps.Metro的各种控件应用; 5、封装使用较为复杂的OpenCV算法; 6、方便算法开发人员测试调试算法;

2024-12-30

Oui一个用于开发 OpenWrt Web 接口的框架

Oui 是一个用来开发 OpenWrt Web 接口的框架。 Oui 使用 Lua-eco 开发其静态文件服务器。 Oui 前端使用 Vue3 编写,使用 Vite 构建前端代码。 不同于传统的前端项目,所有的页面作为一个整体进行打包。Oui 实现了和 Luci 一样的模块化,每个页面独立打包,互不影响。其处理方式为将每个页面以库的形式进行打包。

2024-12-30

采用EDA硬件辅助验证行业先进的非实时信号跟踪技术,用户无需在源码/网表级别植入任何探针(Probe),就能在FPGA调试过程中,获得100%信号可见性

代码是设计出来的,也是调试出来的。如果调试不直观,那么即使有可见性,也无法知道看到的是什么。 对于FPGA调试,一直以来工程师普遍抱怨,可见性非常差,但可见性、可观测能力,或者说能够获取尽可能多的数据,是做出正确决策的第一步。 FPGA芯片作为价格亲民的"ASIC",两者共享一样的设计开发流程,把代表FPGA最先进调试能力的EDA硬件辅助验证技术,服务日常的FPGA应用开发。

2024-12-30

可通信状态机(CSM)

可通信状态机(CSM)是一个基于JKI状态机(JKISM)的LabVIEW应用框架。它遵循 JKISM 的模式,扩展了关键词以描述模块之间的消息通信,包括同步消息、异步消息、状态订阅/取消订阅等概念

2024-12-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除