Pytorch学习 day10(L1Loss、MSELoss、交叉熵Loss、反向传播)

Loss

  • loss的作用如下:
    • 计算实际输出和真实值之间的差距
    • 为我们更新模型提供一定的依据(反向传播)

L1Loss

  • 绝对值损失函数:在每一个batch_size内,求每个输入x和标签y的差的绝对值,最后返回他们平均值
    在这里插入图片描述

MSELoss

  • 均方损失函数:在每一个batch_size内,求每个输入x和标签y的差的平方,最后返回他们的平均值
    在这里插入图片描述

交叉熵Loss

  • 当我们在处理分类问题时,经常使用交叉熵损失函数。
    • 交叉熵能够衡量同一个随机变量中的两个不同概率分布的差异程度,在机器学习中就表示为真实概率分布与预测概率分布之间的差异。交叉熵的值越小,模型预测效果就越好。
    • 交叉熵在分类问题中常常与softmax是标配,softmax将输出的结果进行处理,使其多个分类的预测值和为1,再通过交叉熵来计算损失。
  • 由于以下内容需要理解Softmax函数和交叉熵损失函数,所以先回顾一遍:
  • Softmax函数:
    • 首先,分类任务的目标是通过比较每个类别的概率大小来判断预测的结果。但是,我们不能选择未规范化的线性输出作为我们的预测。原因有两点。
1. 线性输出的总和不一定为1
2. 线性输出可能有负值
  • 因此我们采用Softmax规范手段来保证输出的非负、和为1,公式和举例如下:
    • 左侧为Softmax函数公式,右侧的o为线性输出,y为Softmax规范后的输出
      在这里插入图片描述
  • 交叉熵损失函数:
    • 下图为交叉熵损失函数公式,P(x)为真实概率分布,q(x)为预测概率分布:
      在这里插入图片描述
  • 我们将Softmax规范后的输出代入交叉熵损失函数中,可得:
    • 在训练中,我们已知该样本的类别,那么在该样本的真实概率分布中,只有该类别为1,其他都为0。
    • 在计算机中的log,默认都是ln。
      请添加图片描述
  • 这就是Pytorch官网中的交叉熵损失函数公式:
    在这里插入图片描述
  • 注意:给此公式的交叉熵损失函数传入的input,不需要进行规范化,即不需要进行Softmax变换
  • 我们仍然使用该类的对象函数来调用forward方法,而forward方法需要满足以下条件:
    • input:第一位为batch_size,第二位为输入的class数量
    • target:只有一位,为batch_size
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丿罗小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值