数据分析-常用模型-RFM模型

一、RFM模型的底层逻辑

漏斗模型中,大部分业务都是按流程推进,可以做漏斗分析。但是,大家有没有想过一个问题:

  1. 如果没有转化过程记录,该怎么办?
  2. 如果用户行为频率很高,有几十个漏斗,怎么办?
  3. 如何用户之间行为差异很大,有人几十个漏斗,有人只有1个,咋办?

此时,你本能地会想到:能不能不要每次都统计漏斗,而是直接看行为结果的发生频率、发生数量、发生时间,这样就能快速区分出高低用户之间的差异。是滴,这是个正确的思路,RFM模型的设计思路正是如此。

二、RFM模型计算方式

RFM一般用于统计用户消费行为

R(recency):最后一次消费距今多久

F(frequency):最近1段时间内消费频率

M(monetary):最近1段时间内累计消费金额

以上就能统计出RFM指标,统计后形式如下表所示,每个用户有对应的RFM指标数值。

这里有5个要点注意:

  1. RFM以用户ID为单位进行统计,如果是传统零售,没记录用户ID,只有订单小票的流水号,则没法用这个模型,至少得有个手机号做ID。
  2. F值统计规则要看业务场景,如果一天内可能多笔、反复交易,可以直接统计有交易天数,如果一个天之内一般只交易一笔,或者好多天一笔,可以直接统计笔数。
  3. 最近1段时间,到底看多久?和业务特点有直接关系。原则上,越高频的业务,看得时间越短,比如都是零售,如果是生鲜可以以周为单位统计(人每天要吃饭),如果是日杂可以以月为单位统计。
  4. 新用户因为时间太短(比如注册不足1周/不足1个月)则单独统计,RFM适用于有一定时间的老用户。
  5. R的分段原理同上,越高频的业务,R分段越短。如果是生鲜可能以天来看。越低频的业务,比如理财、
### RFM 用户模型数据分析方法与实现 #### 一、RFM 模型概述 RFM 是一种用于衡量客户价值和潜在的框架,它基于三个关键指标:最近一次购买时间 (Recency),购买频率 (Frequency),以及消费金额 (Monetary)[^1]。 #### 二、数据准备 在实际操作中,可以从客户运营平台或 CRM 软件中提取必要的会员数据。这些数据通常包括但不限于客户的个人信息、最后一次交易的时间戳、累计交易总金额及次数等信息。 #### 三、计算字段 对于每一条记录,需分别计算 R 值(距离今天有多少天未发生过交易)、F 值(该顾客总共进行了多少次有效订单) 和 M 值(此期间内所有订单的商品总价)。这一步骤可以通过简单的 SQL 查询或是 Pandas 库中的 `groupby` 函数轻松完成[^2]。 ```python import pandas as pd # 计算R, F, M值 rfm_df = transactions.groupby('customer_id').agg({ 'order_date': lambda x: (pd.to_datetime('now') - x.max()).days, 'order_id': 'count', 'total_amount': 'sum' }).rename(columns={ 'order_date': 'recency', 'order_id': 'frequency', 'total_amount': 'monetary' }) ``` #### 四、评分机制 根据业务需求设定合理的分段标准给各个维度打分,例如将 R/F/M 的得分范围设为 1 到 5 分不等;之后按照一定的权重加权求和得出综合评价分数,并据此划分不同的客户群体[^3]。 ```python def rfm_score(r, f, m): """自定义评分逻辑""" score_r = ... # 对 recency 打分 score_f = ... # 对 frequency 打分 score_m = ... # 对 monetary 打分 return round((score_r + score_f * 0.7 + score_m * 1.2), 2) rfm_df['rfm_score'] = rfm_df.apply(lambda row: rfm_score(row.recency, row.frequency, row.monetary), axis=1) ``` #### 五、分类标签化处理 最后一步是对上述获得的结果进一步加工,即创建一个映射表来描述不同区间内的具体含义并赋予相应的文字说明作为最终的人群标签。 ```python def classify_customers(score): if score >= 8: return "重要价值客户" elif ... rfm_df['label'] = rfm_df['rfm_score'].apply(classify_customers) ``` 通过以上五个阶段的工作流程,便能够有效地运用 RFM 模型对企业内部庞大的用户数据库展开深入挖掘,从而更好地理解现有用户的特征及其偏好趋势,进而制定更加精准有效的营销策略[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值