一、RFM模型的底层逻辑
漏斗模型中,大部分业务都是按流程推进,可以做漏斗分析。但是,大家有没有想过一个问题:
- 如果没有转化过程记录,该怎么办?
- 如果用户行为频率很高,有几十个漏斗,怎么办?
- 如何用户之间行为差异很大,有人几十个漏斗,有人只有1个,咋办?
此时,你本能地会想到:能不能不要每次都统计漏斗,而是直接看行为结果的发生频率、发生数量、发生时间,这样就能快速区分出高低用户之间的差异。是滴,这是个正确的思路,RFM模型的设计思路正是如此。
二、RFM模型计算方式
RFM一般用于统计用户消费行为
R(recency):最后一次消费距今多久
F(frequency):最近1段时间内消费频率
M(monetary):最近1段时间内累计消费金额
以上就能统计出RFM指标,统计后形式如下表所示,每个用户有对应的RFM指标数值。
这里有5个要点注意:
- RFM以用户ID为单位进行统计,如果是传统零售,没记录用户ID,只有订单小票的流水号,则没法用这个模型,至少得有个手机号做ID。
- F值统计规则要看业务场景,如果一天内可能多笔、反复交易,可以直接统计有交易天数,如果一个天之内一般只交易一笔,或者好多天一笔,可以直接统计笔数。
- 最近1段时间,到底看多久?和业务特点有直接关系。原则上,越高频的业务,看得时间越短,比如都是零售,如果是生鲜可以以周为单位统计(人每天要吃饭),如果是日杂可以以月为单位统计。
- 新用户因为时间太短(比如注册不足1周/不足1个月)则单独统计,RFM适用于有一定时间的老用户。
- R的分段原理同上,越高频的业务,R分段越短。如果是生鲜可能以天来看。越低频的业务,比如理财、