caffe 容易犯的错误

1,送进去网络的数据没有shuffle:会导致的现象是感觉网络学习不到东西

 

2,网络参数没有初始化设置:会导致的现象是Backward全0,在solver.prototxt中最后加一行debug_info: true,看看调试信息,往往会发现前向传播时就在某一层全0了,也就找到了对应的没有初始化参数的层

常见需要初始化的层

#conv

layer {

bottom: "concat1_1"

top: "conv1_2"

name: "conv1_2"

type: "Convolution"

convolution_param {

num_output: 64

pad: 1

kernel_size: 3

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

 

#fc

layer {

bottom: "fc7"

top: "fc8"

name: "fc8"

type: "InnerProduct"

param {

lr_mult: 0.1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

inner_product_param {

num_output: 12

weight_filler {

type: "xavier"

}

bias_filler {

type: "constant"

value: 0

}

}

}

 

3,BatchNorm参数设置错误:可能会导致出现nan,正确的设置是训练时use_global_stats: false,测试时use_global_stats: true

#train

layer {

name: "conv1_2_bn"

type: "BatchNorm"

bottom: "conv1_2"

top: "conv1_2"

batch_norm_param {

use_global_stats: false

eps: 0.001

}

}

 

#test

layer {

name: "conv1_2_bn"

type: "BatchNorm"

bottom: "conv1_2"

top: "conv1_2"

batch_norm_param {

use_global_stats: true

}

}

 

4,输出一大片固定成了0.5:可能是在最后一层之前用了一次relu,例如最后两层分别是conv层和softmax层,结果在conv层后面加了一个relu,然后就有很多直接数据就被过滤了。

 

喜欢本文请打赏,一毛两毛也是个意思,么么哒
支F宝账号:2363891614@qq.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值