
大模型
文章平均质量分 94
许泽宇的技术分享
微软最有价值专家(Al Platform MVP),华为云开发者专家(HCDE),NebulaGraph认证专家,Neo4j认证专家,上市公司首席架构师,211研究生在读,专注.Net 和AI相关技术,每期内容涵盖教程、技巧、行业动态及解决方案,助力各层次开发者掌握技术精髓,共同进步。
运营公众号与B站同号《许泽宇的技术分享》
简介、实用、深入.Net与AI世界,开始我们的技术之旅。加油吧.Net
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
「3550亿参数的双人格」:为什么 GLM-4.5 有望成为下一代 AI 智能体的底座?
文章摘要(150字): GLM-4.5以"双模式智能体"崭露头角,通过混合推理架构(Thinking/Non-Thinking模式)实现深度思考与快速响应的动态切换。其核心优势在于:3550亿总参数中仅32亿活跃的高效MoE架构、128K长上下文支持、以及工具调用成功率90.6%的Agent能力。在BFCL、MMLU-Pro等12项基准测试中综合排名第三,尤其擅长代码生成(SWE-bench 64.2%)和实时搜索任务(BrowseComp 26.4%)。开源MIT许可下,开发者可通过v原创 2025-07-29 11:00:41 · 690 阅读 · 0 评论 -
朋友圈还没刷到?字节“扣子”今天正式开源!——从技术细节、商业棋局到未来生态的全景透视
字节跳动开源Coze平台:AI Agent开发的全栈解决方案 字节跳动开源了Coze平台,提供从开发到运维的AI Agent工程全栈解决方案。该平台包含四大核心组件:可视化开发工具Coze Studio、全生命周期管理工具Coze Loop、多语言SDK以及MCPServer协议。技术亮点包括Go+React的架构设计、Prompt调试工具链和全端兼容的SDK矩阵。商业策略采用"开源+增值服务"模式,结合火山引擎的算力优势。与LangChain等工具相比,Coze更偏向平台化解决方案,降原创 2025-07-26 11:24:21 · 1614 阅读 · 0 评论 -
【爆款深度】AI模型管理的终极武器:MME,让你的大模型团队“卷”出新高度!
自从 ChatGPT、文心一言、通义千问等大模型横空出世,AI开发者的日常就变成了“模型多如牛毛,接口五花八门,日志满天飞,评测全靠猜”。企业级AI应用开发,最怕的不是没模型,而是模型太多、管理太乱、效果难评、成本难控。模型接入太多,接口各异,怎么统一管理?模型效果更新了,怎么科学对比新老模型?生产环境的真实请求,怎么转化为高质量测试集?Token用量、API成本、性能瓶颈,怎么一目了然?日志追踪、回放、A/B测试,怎么一站式搞定?原创 2025-07-16 17:37:53 · 853 阅读 · 0 评论 -
揭秘Langfuse:如何用一套开源平台把LLM应用开发、监控、评测全都玩明白?
Langfuse:开源LLM工程平台全解析 Langfuse是一款开源的LLM工程平台,专为AI团队打造工业级开发流程。平台提供全链路可观测性、Prompt版本管理、自动评测和数据集管理等核心功能,支持从开发到监控的完整生命周期。采用双应用架构,整合PostgreSQL、ClickHouse等多数据库策略,搭配Next.js、tRPC等现代化技术栈。支持Docker/K8s等多种部署方式,并与主流AI框架深度集成。通过Monorepo组织代码,实现高效协作开发。Langfuse将LLM应用开发从"原创 2025-07-13 12:55:54 · 877 阅读 · 0 评论 -
RagaAI Catalyst:让你的大模型项目“起飞”的全能神器!
如果你觉得“AI项目管理”像是在玩一场多线程的RPG游戏——每个角色(数据、评测、追踪、提示词、护栏、红队)都要单独升级、装备、打怪、回血……那么RagaAI Catalyst就是你的“全自动队长+外挂+金手指”。它集成了项目管理、数据集管理、评测、追踪、提示词管理、合成数据、护栏、红队测试等一站式能力,帮你把LLM(大语言模型)项目从混乱的“手工作坊”升级为“智能流水线”。一站式管理:项目、数据、评测、追踪、提示词、合成数据、护栏、红队,全部搞定。自动化、可扩展。原创 2025-07-11 11:12:42 · 743 阅读 · 0 评论 -
【爆款长文】从文本到向量:文本处理与大模型训练攻略
分词,就是把一段文本拆成小块。比如:分词后可能变成:为什么要分词?因为模型的“胃口”有限,一口吞下整本书会噎死。分词让模型能逐块消化,既高效又安全。Token ID只是个数字,模型看不懂。嵌入层(Embedding Layer)把每个ID映射成一个高维向量(比如256维),让模型能“感知”token之间的关系。分词不是越细越好,要结合实际场景和模型需求。词表设计要兼顾覆盖率和效率,BPE是主流选择。特殊token是模型的“安全气囊”,别忘了加。滑窗采样和批量加载是大规模训练的基础设施。嵌入层和位置编码。原创 2025-07-10 18:37:34 · 759 阅读 · 0 评论 -
让AI炒股,能赢巴菲特吗?——深扒TradingAgents多智能体金融交易框架
《AI组团炒股来了!开源多智能体交易框架TradingAgents揭秘》 TradingAgents是一个创新的多智能体金融交易框架,它将投行团队协作模式搬到了AI世界。该项目组建了由基本面分析师、情绪分析师、新闻分析师等角色组成的"AI梦之队",每个角色由大模型驱动,通过分工协作和辩论博弈做出投资决策。 该框架采用LangGraph技术,具有模块化、可扩展的特点,支持多种大模型灵活切换,并兼容实时数据和离线回测。其核心价值在于通过多视角分析和相互制衡机制,提升决策的稳健性。 目前该项目原创 2025-07-10 13:04:54 · 2368 阅读 · 0 评论 -
让AI帮你写SQL?揭秘“提及抽取+链接”新范式,文本到SQL的终极秘籍!
文章摘要:Text-to-SQL技术新范式"提及抽取+链接"将自然语言问题转化为SQL查询,相比传统"拼装式"方法,该方案通过BERT+CRF模型直接从文本中抽取SQL元素并链接到数据库表头,实现87.8%的逻辑准确率。其一体化架构简化了模块关系建模,但处理嵌套结构仍有不足。该技术让非技术人员也能轻松查询数据库,是AI与结构化数据交互的重要突破,未来有望拓展至多表复杂查询场景。原创 2025-07-08 14:52:33 · 603 阅读 · 0 评论 -
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
实现接口,注册到服务容器即可。AntSK不是“又一个AI知识库”,而是“企业级AI应用的万能底座”。它用.NET9和Blazor的现代技术栈,集成了Semantic Kernel、Kernel Memory等AI能力,支持多模型、多插件、文生图、OCR等丰富功能,适合企业、开发者、AI爱好者快速搭建自己的AI应用。无论你是想打造企业知识库、智能客服、AI写作助手,还是开发自己的AI App,AntSK都能让你“少踩坑、多赚钱”。还等什么?赶紧下载体验,开启你的AI赋能之旅吧!原创 2025-07-06 16:20:26 · 925 阅读 · 0 评论 -
【爆款深度长文】Trae Agent:让AI成为你的编程小助手,软件工程师的“全能管家”!
摘要:TraeAgent是一款AI驱动的软件工程助手,支持自然语言指令完成代码生成、bug修复、单元测试等开发任务。它结合大语言模型和工具链,提供交互式CLI、详细日志追踪和多LLM切换功能。通过自动化重复工作,让开发者专注于创造性工作。具备灵活配置、错误处理友好等特点,未来将扩展更多工具和协作功能。安装简单,支持pip安装,适合现代开发流程。原创 2025-07-06 11:12:56 · 1187 阅读 · 0 评论 -
【深度解读】ERNIE 4.5:百度大模型的“多模态魔法”,AI圈的全能王者来了!
百度ERNIE4.5重磅发布:210亿参数多模态MoE大模型,支持文本与视觉联合理解与生成。采用异构专家混合架构,6个专家同时激活,实现高效推理。关键创新包括:多模态MoE预训练、超长131072上下文支持、FP8混合精度训练等。提供ERNIEKit、FastDeploy等全套工具链,支持SFT/DPO/UPO微调。在智能问答、内容创作、视觉理解等场景表现优异。Apache 2.0开源协议,商业可用,推动AI多模态应用落地。原创 2025-07-02 16:26:39 · 936 阅读 · 0 评论 -
RagaAI Catalyst:让你的大模型项目管理像开挂一样丝滑!
自从大模型(LLM)火遍全宇宙,大家都在搞RAG、Agent、Chatbot、智能问答……项目多,需求杂:每个项目都要单独管理,需求还天天变。数据集乱成麻:数据格式五花八门,版本管理靠Excel,出错率爆表。评测靠手动:模型效果好不好,全靠“肉眼鉴定”,效率低下。追踪难如登天:出bug了,谁也说不清是哪一步出的问题。提示词管理混乱:Prompt一多,版本一乱,调优全靠记忆力。合成数据难产:想补数据,生成Q&A,流程繁琐,效率感人。护栏形同虚设:模型输出不靠谱,想加规则,结果一团乱麻。红队测试无从下手。原创 2025-06-30 13:00:15 · 589 阅读 · 0 评论 -
Refly:让AI工作流飞起来,你的AI助手不再摸鱼!
《Refly:AI工作流开源平台让生产力"飞"起来》 摘要: Refly是一款创新的开源AI工作流平台,被誉为AI生产力的"核动力引擎"。它整合了多智能体调度、13+主流模型切换、多模态内容处理等11大核心功能,可实现低代码搭建自动化工作流。无论是开发者、产品经理还是内容创作者,都能快速将创意转化为生产力工具。平台支持Docker/K8s一键部署,具备多线程会话、知识图谱管理、智能引用等特色功能,让AI真正成为能"多线程撸活"的智能打工人。目前项目原创 2025-06-24 13:50:37 · 829 阅读 · 0 评论 -
【爆款长文】Vanna:让SQL飞起来的开源RAG神器,数据分析师的终极外挂!
Vanna,表面上是个Python包,实际上是你数据分析路上的“外挂”。它基于RAG(检索增强生成)技术,能把自然语言问题自动转成SQL,并且还能直接跑在你的数据库上,自动生成可视化图表。训练(Train):把你的数据库结构、业务文档、历史SQL喂给Vanna。提问(Ask):用自然语言问业务问题,Vanna自动生成SQL并执行,结果直接出表、出图。是不是有点像ChatGPT?但Vanna专为数据分析和SQL生成优化,支持各种主流LLM(大模型)、向量数据库和SQL数据库,灵活性爆表。原创 2025-06-08 19:47:23 · 1031 阅读 · 0 评论 -
AI与软件工程结合的未来三年发展路径分析
AI与软件工程融合三年发展路径:2025-2028年将经历三个关键阶段。技术层面从AI辅助编程(代码补全)演进至AI主导开发(端到端应用构建),行业垂直模型与通用模型协同发展;组织结构向"AI中心+专家团队"转型,DevAIOps重塑开发流程;人才需求从编码能力转向AI协作与系统设计能力。商业模式将重构为"AI+人类专家"混合模式,开发周期缩短80%,成本下降50%。建议企业立即构建AI赋能中心,投资人才转型,建立混合开发体系和AI治理框架,把握智能化转型先机。原创 2025-05-30 16:57:32 · 1478 阅读 · 0 评论 -
AI开始写代码,程序员要失业?不,他们正忙着驯服“赛博神兽”
AI编程时代来临:程序员如何转型"驯兽师" 当前AI编程工具如GitHub Copilot已能快速生成代码、修复bug,甚至实现低代码开发。微软预测2030年95%代码将由AI生成。但AI存在三大局限:无法理解复杂业务逻辑(如产品需求中的"五彩斑斓的黑")、缺乏真正创造力、无法承担伦理责任。 未来程序员将转型为"AI驯兽师",主要扮演三种角色:AI指令大师(用精准提示词调教AI)、系统架构指挥官(设计整体方案)、伦理安全守护者(审查算法缺陷)。新兴原创 2025-04-16 12:05:00 · 303 阅读 · 0 评论 -
.NET MCP 示例
这个示例展示了如何创建一个聊天应用,将 MCP 工具与 Microsoft Semantic Kernel 集成,使用户能够通过自然语言与 AI 交互,而 AI 能够使用 MCP 工具来完成任务。这个示例展示了如何创建一个聊天应用,将 MCP 工具与 OpenAI 的 GPT 模型集成,使用户能够通过自然语言与 GPT 交互,而 GPT 能够使用 MCP 工具来完成任务。这个示例展示了如何列出可用的 MCP 工具,并调用不同类型的工具,包括带参数和不带参数的工具。原创 2025-04-14 17:31:22 · 1038 阅读 · 0 评论 -
深入掌握 Semantic Kernel Memories:用向量数据库为 LLM 提供长时上下文
Embeddings可以帮助模型从文本中提取或生成最重要或最相关的信息,并创建简洁连贯的摘要。例如,Embeddings可以帮助模型总结新闻文章、产品评论、研究论文等。原创 2024-08-22 11:58:53 · 976 阅读 · 0 评论