浅谈人工智能之基于本地大模型的前后端平台开发示例

浅谈人工智能之基于本地大模型的前后端平台开发示例

概述

随着人工智能技术的飞速发展,本地大模型(Large Language Models, LLMs)因其强大的语言理解和生成能力,逐渐成为驱动新一代智能应用的核心。本文档旨在通过一个实际案例,展示如何在前后端平台上集成和利用本地部署的大规模语言模型,以构建一个交互式AI辅助文本创作工具。该示例将涵盖技术选型、系统架构设计、关键实现步骤以及性能优化策略。

技术栈选型

为了快速搭建一套前后端和大模型服务的开发样例,我们用最简单的技术框架进行搭建
● 前端:html + js(用于处理信息输入和展示)
● 后端:python + flask(处理API请求,与本地模型交互)
● 模型服务:使用Qwen2大模型(用于本地部署大模型),对于本地化大模型部署内容,大家可以参考我往期的文章进行参考。

应用实例

前端界面开发

第一步:我们编写如下html界面

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Chat Interface with Markdown</title>
    <style>
        #chatHistory {
     
     
            height: 400px;
            overflow-y: scroll;
            border: 1px solid #ccc;
            padding: 10px;
        }
        #userInput {
     
     
            width: 100%;
            box-sizing: border-box;
            margin-bottom: 10px;
        }
    </style>
    <!-- 引入marked库 -->
    <script src="https://cdnjs.cloudflare.com/ajax/libs/marked/4.2.12/marked.min.js"></
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奔波儿灞爱霸波尔奔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值