TensorFlow实现线性模型

本文通过使用TensorFlow实现了一个简单的线性模型,演示了如何建立模型、设定损失函数及定义优化函数。从输入数据到训练过程,详细介绍了每个步骤的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过TensorFlow来建立一个简单的线性模型以便理解深度学习的建立模型、设定损失函数、定义优化函数。

import tensorflow as tf

# x为输入,y_true为标签
x = tf.constant([[1], [2], [3], [4]], dtype=tf.float32)
y_true = tf.constant([[0], [-1], [-2], [-3]], dtype=tf.float32)

# 通过tf.layers.Dense建立一个输出单元的线性模型
linear_model = tf.layers.Dense(units=1)

# 定义损失函数
y_pred = linear_model(x)
loss = tf.losses.mean_squared_error(labels=y_true, predictions=y_pred)

# 定义优化函数
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

#初始化
init = tf.global_variables_initializer()

# 运行计算图
sess = tf.Session()
sess.run(init)
for i in range(1000):
  _, loss_value = sess.run((train, loss))
  print(loss_value)

print(sess.run(y_pred))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值