图像标准化

本文介绍了一种将图片数据标准化的方法,确保数值范围在0到1之间,适用于深度学习模型的输入预处理。文中提供了两种实现方式:一是利用最小最大缩放,二是直接除以255。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传入图片数据 x,并返回标准化 Numpy 数组。值应该在 0 到 1 的范围内(含 0 和 1)。返回对象应该和 x 的形状一样。

def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # 方法一:
    return (x-np.min(x))/(np.max(x)-np.min(x))

    # 方法二:
    # return x/255
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值