面试了个35岁阿里10年老P7,他让我见识到了怎么样 “一步步让系统变得稳定与高效”...

问:排行榜是许多应用程序的核心功能,尤其是在游戏和商品排行中,它们可以促进参与和竞争。然而,构建可扩展以实时处理数百万用户的排行榜面临多项技术挑战。请你说说如何设计可扩展的排行榜系统?详细介绍所涉及的组件、它们的实现以及如何解决潜在的限制。

1

   

🟦第 1 步:从 RDS 和 API 网关开始

1.1

   

🔷 API 网关

API 网关充当所有客户端交互的单一入口点。它处理获取排行榜数据和提交分数的请求。它将 API 调用路由到后端,执行身份验证和限制等任务以有效管理流量。

1.2

   

🔷 关系数据库 (MySQL/PostgreSQL)

MySQL 或 PostgreSQL 等关系数据库是存储用户分数和排名的坚实基础。在此设置中,表包含用户 ID、分数和时间戳。这使得使用 SQL 查询、更新和排序记录变得容易。典型的模式可能如下所示:

CREATE TABLE leaderboard (    user_id INT PRIMARY KEY,    score INT NOT NULL,    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);

您可以使用简单的 INSERT 或 UPDATE 语句来管理分数,并 SELECT 使用查询 ORDER BY score DESC 来显示排行榜。此设置简单且成本低廉,非常适合较小的用户群。

f96b9380d302bb1cb330734d814a01a8.png

1.3

   

限制

性能瓶颈:随着用户数量的增长,对数百万条记录的排序和排名变得缓慢,从而导致响应时间增加。

实时挑战:高频率更新可能会导致重新计算排名时出现延迟。

1.4

   

潜在解决方案

引入数据库索引和缓存层以减少查询时间,或随着流量的增长迁移到更具可扩展性的数据库解决方案。

2

   

🟦第 2 步:引入缓存以实现更快的读取速度

2.1

   

🔷 Redis 缓存

Redis 是一种内存数据结构存储,擅长提供快速数据访问。通过使用有序集,Redis 可以根据分数高效地存储和检索排行榜条目。例如,在 Redis 中添加和检索分数可能如下所示:

ZADD leaderboard 1000 "user_123"ZRANGE leaderboard 0 9 WITHSCORES

Redis 通过处理频繁的读取请求大大减少了数据库负载,使其成为显示前 N 个用户或几乎立即检索特定用户排名的理想选择。

2.2

   

🔷 API 层修改

API 逻辑应更新为在查询数据库之前先检查 Redis。如果 Redis 返回缓存未命中,则 API 将从数据库获取数据,更新 Redis,并提供响应。

1bcd51fc2db0c4a69c147b31af6b5775.png

2.3

   

限制

数据不一致:数据库中的更改可能不会立即反映在 Redis 中,从而导致数据过时。

2.4

   

潜在解决方案

实施缓存失效策略,如生存时间 (TTL) 和事件驱动更新,以确保缓存的实时性。

3

   

🟦第 3 步:支持历史排行榜

3.1

   

🔷 时间序列数据库 (InfluxDB/DynamoDB)

当用户想要跟踪其一段时间内的表现时,时间序列数据库是理想的选择。InfluxDB 或 DynamoDB 可以高效地存储带时间戳的记录,从而实现对每日、每周或每月排行榜的查询。该系统允许将记录存储为:

{  "user_id": "123",  "score": 1050,  "timestamp": "2024-12-01T10:00:00Z"}

3.2

   

🔷 后台作业调度程序

后台调度程序(例如 Cron Jobs 或 AWS Lambda)可以定期将排行榜数据从 Redis 或主数据库导出到时间序列数据库中,确保最新的历史记录。

635893fa5474c8bb1f02f5ae8a317182.png

3.3

   

限制

增加复杂性:添加历史跟踪涉及管理额外的存储和定期数据聚合。

3.4

   

潜在解决方案

自动化数据聚合管道并使用监控工具来管理操作复杂性。

4

   

🟦第 4 步:使用 NoSQL 数据库扩展写入

4.1

   

🔷 NoSQL 数据库 (DynamoDB/Cassandra)

随着流量的增长,关系数据库可能难以处理大量写入。DynamoDB 或 Cassandra 等 NoSQL 数据库专为可扩展性和高写入吞吐量而设计。它们将数据分区到多个节点,提供水平可扩展性。这有助于高效处理并发写入操作。

4.2

   

🔷异步写入队列

异步写入队列(例如 Amazon SQS 或 RabbitMQ)可以缓冲传入的分数更新,从而允许后端批量处理这些更新,而不是单独处理每个更新。这可以防止在高流量期间系统变慢。

8c53467ce36f602c69de9b2bf823ad71.png

4.3

   

限制

最终一致性:NoSQL 数据库通常优先考虑可用性而不是即时一致性,导致排行榜更新略有延迟。

4.4

   

潜在解决方案

使用最终一致性模型和实时协调流程来进行关键的排行榜更新。

5

   

🟦第 5 步:添加实时通知

5.1

   

🔷通知服务

通知服务可以监控用户排名的变化,并在发生重大变化时触发事件。此服务可以与 Apache Kafka 或 AWS SNS 集成以检测和广播排名变化。

5.2

   

🔷推送通知(Firebase/SNS)

消息推送会向用户设备发送通知,鼓励用户在收到更新时重新使用该应用程序。

392b706a9898f2188247919d11b0256f.png

5.3

   

限制

通知过载:发送过多的通知可能会让用户不知所措,从而导致他们失去兴趣。

5.4

   

潜在解决方案

引入速率限制和基于优先级的通知,以避免向用户发送非必要更新消息。

6

   

🟦第 6 步:确保容错性和可扩展性

6.1

   

🔷负载均衡器

负载均衡器(例如 AWS ALB)在多个后端服务器之间均匀分配流量,确保一致的响应时间和高可用性。

6.2

   

🔷分布式缓存

使用分片 Redis 集群可以通过在多个 Redis 节点间分布缓存条目来处理更大的数据集,确保高效的内存使用和快速访问。

6.3

   

🔷数据库复制

数据库复制涉及创建只读副本来处理读取密集型工作负载,通过在多个副本之间分配查询来提高性能。

4907e7f9891a0b09e2112164fba82245.png

6.4

   

限制

运营开销:管理多个组件(包括缓存、副本和负载均衡器)增加了复杂性。

6.5

   

潜在解决方案

使用 Terraform 或 Kubernetes 等工具自动化基础设施管理,实现高效的扩展和容错。

7

   

🟦第 7 步:持续监控和优化

7.1

   

🔷监控工具(Prometheus/Grafana)

监控工具收集 API 延迟、缓存命中/未命中率和数据库负载等指标。Prometheus 收集数据,而 Grafana 将其可视化,帮助识别性能瓶颈。

7.2

   

🔷自动扩展

HPA 或者 VPA 自动扩展可确保服务器资源动态调整以适应流量波动,在高负载事件期间保持最佳性能。

1b9835a958b55ed1d6ad60188040a861.png

7.3

   

限制

警报疲劳:频繁的非关键警报会使运营团队对实际问题变得不敏感。

7.4

   

潜在解决方案

实施具有严重程度和升级策略的智能警报,以避免不必要的干扰。

8

   

🟦最后的想法

构建可扩展的排行榜系统不仅仅涉及存储和排序分数。通过逐步集成缓存、历史跟踪、NoSQL 数据库和实时通知,您可以确保您的系统能够处理数百万用户,同时保持性能和参与度。

通过遵循本指南,您将创建一个强大且可扩展的排行榜,它不仅在高负载下表现良好,而且还可以通过实时互动和洞察让用户保持参与。

推荐


后摩尔定律时代,什么将推动计算机性能优化的发展?


性能优化的实践派与学院派


随手关注或者”在看“,诚挚感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Spring_java_gg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值