题意: 1.求最小的点数使得信息到达所有的点。
2.再增加多少条边使得全图为一个强连通图
解:1.ans= NUM【入度=0】
2.MAX( NUM[入度=0],NUM[出度=0])
注意已是一个强连通图时
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <cmath>
using namespace std;
#include <queue>
#include <stack>
#include <set>
#include <vector>
#include <deque>
#include <map>
#define cler(arr, val) memset(arr, val, sizeof(arr))
typedef long long LL;
const int MAXN = 410;
const int MAXM = 140000;
const int INF = 0x3f3f3f3f;
const LL mod = 10000007;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int n, m;//n m 为点数和边数
struct Edge{
int from, to, nex;
bool sign;//是否为桥
}edge[MAXM<<1];
int head[MAXN], edgenum;
void add(int u, int v){//边的起点和终点
Edge E={u, v, head[u], false};
edge[edgenum] = E;
head[u] = edgenum++;
}
int DFN[MAXN], Low[MAXN], Stack[MAXN], top, Time; //Low[u]是点集{u点及以u点为根的子树} 中(所有反向弧)能指向的(离根最近的祖先v) 的DFN[v]值(即v点时间戳)
int taj;//连通分支标号,从1开始
int Belong[MAXN];//Belong[i] 表示i点属于的连通分支
bool Instack[MAXN];
vector<int> bcc[MAXN]; //标号从1开始
void tarjan(int u ,int fa)
{
DFN[u] = Low[u] = ++ Time ;
Stack[top ++ ] = u ;
Instack[u] = 1 ;
for (int i = head[u] ; ~i ; i = edge[i].nex )
{
int v = edge[i].to;
if(DFN[v] == -1)
{
tarjan(v , u);
Low[u] = min(Low[u] ,Low[v]) ;
if(DFN[u] < Low[v])
{
edge[i].sign = 1;//为割桥
}
}
else if(Instack[v])
{
Low[u] = min(Low[u] ,DFN[v]) ;
}
}
if(Low[u] == DFN[u])
{
int now;
taj ++ ;
bcc[taj].clear();
do{
now = Stack[-- top] ;
Instack[now] = 0 ;
Belong [now] = taj ;
bcc[taj].push_back(now);
}while(now != u) ;
}
}
void tarjan_init(int all){
memset(DFN, -1, sizeof(DFN));
memset(Instack, 0, sizeof(Instack));
top = Time = taj = 0;
for(int i=1;i<=all;i++)
if(DFN[i]==-1 )
tarjan(i, i); //注意开始点标!!!
}
vector<int>G[MAXN];
int du[MAXN];
void suodian(){
memset(du, 0, sizeof(du));
for(int i = 1; i <= taj; i++)
G[i].clear();
for(int i = 0; i < edgenum; i++)
{
int u = Belong[edge[i].from], v = Belong[edge[i].to];
if(u!=v)
{
G[u].push_back(v), du[v]++;
}
}
}
void init(){memset(head, -1, sizeof(head)); edgenum=0;}
int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
int x;
for(int i=1;i<=n;i++)
{
while(cin>>x,x)
add(i,x);
}
tarjan_init(n);
suodian();
int sum1=0,sum2=0;
for(int i=1;i<=taj;i++)
{
if(du[i]==0)
sum1++;
if(G[i].size()==0)
sum2++;
}
sum2=sum1>sum2?sum1:sum2;
if(taj==1)
sum2=0;
printf("%d\n%d\n",sum1,sum2);
}
return 0;
}