
RAG
文章平均质量分 96
酒酿小圆子~
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【RAG】检索增强生成中的重排序(Re-rank)技术
而重排序模型通过综合考虑更多的特征,如查询意图、词汇的多重语义、用户的历史行为和上下文信息等,重新计算上下文的相关性得分,使得真正相关的文档更容易被识别出来。例如,在传统的TF-IDF或BM25方法中,匹配主要依赖于词汇级别的相似度计算,而大型语言模型则可以理解句子和段落的上下文信息,从而更好地识别出真正相关的文档。总之,Cohere提供的在线重排序模型凭借其便捷的接入方式、卓越的性能以及广泛的适用性,成为众多企业和开发者进行RAG系统开发时的重要选择。然而,这类模型对计算资源的需求较高,部署成本较大。转载 2025-05-21 15:43:08 · 268 阅读 · 0 评论 -
【大模型】Ollama+AnythingLLM搭建RAG大模型私有知识库
AnythingLLM是由Mintplex Labs Inc.开发的一个全栈应用程序,是一款高效、可定制、开源的企业级文档聊天机器人解决方案。AnythingLLM能够将任何文档、资源或内容片段转化为大语言模型在聊天中可以利用的相关上下文。AnythingLLM支持几乎所有的主流大模型和多种文档类型,可定制化,而且安装和设置简单。目前适用于MacOS、Linux和Windows操作系统,也可以使用Docker安装。官方已经做好了各个版本的应用,直接下载对应版本,像正常软件一样安装启动即可。1.核心特性。原创 2025-01-23 15:26:50 · 3675 阅读 · 0 评论 -
【大模型】检索增强生成:从RAG、GraphRAG到LightGAG
自 ChatGPT 发布以来,大型语言模型(Large Language Model,LLM,大模型)得到了飞速发展,它在处理复杂任务、增强自然语言理解和生成类人文本等方面的能力让人惊叹,几乎各行各业均可从中获益。为了解决以上通用大模型问题,方案就应运而生。原创 2025-01-23 11:21:42 · 1262 阅读 · 0 评论 -
【大模型】基于LlamaIndex实现大模型RAG
LlamaIndex是一个LLM文本增强的框架,其中包含完整的RAG解决方案。项目在2023年1月29日发布了第一个版本,当时叫做“GPT Index v0.2.17” ,项目作者Jerry Liu。原创 2025-02-07 20:53:49 · 1980 阅读 · 0 评论 -
【大模型】基于Ollama+GraphRAG本地部署大模型,构建知识图谱,实现RAG查询
1、修改settings.yaml文件中实体类别如下位置:2、手动调整prompt自定义实体【LLM大模型】GraphRAG手调Prompt提取自定义实体。原创 2025-01-17 15:54:39 · 4727 阅读 · 7 评论 -
【RAG】检索增强生成RAG 范式、技术和趋势
为什么会有RAG幻觉过时的信息参数化知识效率低缺乏专业领域的深入知识推理能力弱领域支持的精准回答数据频繁更新的需求生成内容需要可追溯可解释可控的成本隐私数据保护因此有了RAG(Retrieval-Augmented Generation 检索增强生成),RAG的基本流程是,当回答问题时,首先从大量文档中检索到相关信息,然后基于这些信息,让LLMs生成答案。这样通过附加一个外部知识库,无需为每个特定任务重新训练整个大型模型。因此RAG模型特别适合于知识密集型任务。转载 2025-05-05 17:54:06 · 132 阅读 · 0 评论 -
【RAG】检索增强生成RAG效果优化技术汇总分析
此过程涉及嵌入一组有限的句子以供检索,这些句子周围的附加上下文(称为“窗口上下文”)被单独存储并与它们链接。一旦确定了最相似的句子,就会在将这些句子发送到大型语言模型 (LLM) 进行生成之前重新整合此上下文,从而丰富整体上下文理解。转载 2025-05-05 15:57:25 · 176 阅读 · 0 评论