Description
给定一个N个结点的树,结点用正整数1..N编号。每条边有一个正整数权值。用d(a,b)表示从结点a到结点b路边上经过边的权值。其中要求a<b.将这n*(n-1)/2个距离从大到小排序,输出前M个距离值。
http://blog.csdn.net/u012915516/article/details/48914879 和超级钢琴家一样的思路。可以先参见这道题~~
跑一次树分治,可以得到不同情况下某点的dist值,以及该情况下该点可以到达的子树区间~~
开一个优先队列,存放四元数据(i,l,r,t):=某种状态下某点对应的下标i,该情况下该点可以到达的区间,以及这个区间内最大的下标值~~~RMQ~~
每次取出队列顶点之后,如果[l,t-1]、[t+1,r]可以形成正确的数据,还要添加到队列里~~
#include <algorithm>
#include <iostream>
#include<string.h>
#include <fstream>
#include <math.h>
#include <vector>
#include <cstdio>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define exp 1e-8
#define fi first
#define se second
#define ll long long
#define INF 0x3f3f3f3f
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define all(a) a.begin(),a.end()
#define mm(a,b) memset(a,b,sizeof(a));
#define for0(a,b) for(int a=0;a<=b;a++)//0---(b-1)
#define for1(a,b) for(int a=1;a<=b;a++)//1---(b)
#define rep(a,b,c) for(int a=b;a<=c;a++)//b---c
#define repp(a,b,c)for(int a=b;a>=c;a--)///
#define cnt_one(i) __builtin_popcount(i)
#define stl(c,itr) for(__typeof((c).begin()) itr=(c).begin();itr!=(c).end();itr++)
using namespace std;
void bug(string m="here"){cout<<m<<endl;}
template<typename __ll> inline void READ(__ll &m){__ll x=0,f=1;char ch=getchar();while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}m=x*f;}
template<typename __ll>inline void read(__ll &m){READ(m);}
template<typename __ll>inline void read(__ll &m,__ll &a){READ(m);READ(a);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b){READ(m);READ(a);READ(b);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c){READ(m);READ(a);READ(b);READ(c);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c,__ll &d){READ(m);READ(a);READ(b);READ(c);read(d);}
template < class T > inline void out(T a){if(a<0){putchar('-');a=-a;}if(a>9)out(a/10);putchar(a%10+'0');}
template < class T > inline void outln(T a){out(a);puts("");}
template < class T > inline void out(T a,T b){out(a);putchar(' ');out(b);}
template < class T > inline void outln(T a,T b){out(a);putchar(' ');outln(b);}
template < class T > inline void out(T a,T b,T c){out(a);putchar(' ');out(b);putchar(' ');out(c);}
template < class T > inline void outln(T a,T b,T c){out(a);putchar(' ');outln(b);putchar(' ');outln(b);}
template < class T > T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template < class T > T lcm(T a, T b) { return a / gcd(a, b) * b; }
template < class T > inline void rmin(T &a, const T &b) { if(a > b) a = b; }
template < class T > inline void rmax(T &a, const T &b) { if(a < b) a = b; }
template < class T > T pow(T a, T b) { T r = 1; while(b > 0) { if(b & 1) r = r * a; a = a * a; b /= 2; } return r; }
template < class T > T pow(T a, T b, T mod) { T r = 1; while(b > 0) { if(b & 1) r = r * a % mod; a = a * a % mod; b /= 2; } return r; }
const int cnt_edge=100100; //修改啊
const int cnt_v=50100;
int head[cnt_v],cnt_e;
struct EDGE{int u,v,next,cost;}edge[cnt_edge];
void init(){cnt_e=0;memset(head,-1,sizeof(head));}
void addedge(int u,int v,int cost=0)
{edge[cnt_e].u=u;edge[cnt_e].v=v;edge[cnt_e].cost=cost;edge[cnt_e].next=head[u];head[u]=cnt_e++;}
int n,k;
int root,tot;
int minn,size[50100];///minn:衡量某个节点是否能当重心,minn越小 就越可以当重心、size[i] i子树的大小
bool del[50100];///记录是否已经删除这个点...
int l,r,cnt;
int dist[2000005];
pair<int,int>p[2000005];
#define dat(i,l,r,t) DAT{i,l,r,t}
struct DAT
{
int i,l,r,t;
bool operator < (const DAT &rhs)const
{
return dist[i]+dist[t]<dist[rhs.i]+dist[rhs.t];
}
};
priority_queue<DAT>que;
void getroot(int u,int fa)
{
size[u]=1;
int maxn=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(v==fa||del[v])continue;///这里必须要加上del[v]
getroot(v,u);
size[u]+=size[v];
maxn=max(maxn,size[v]);
}
maxn=max(maxn,tot-size[u]);
if(maxn<minn)root=u,minn=maxn;
}
int dfs(int u,int fa,int DIST)
{
dist[++cnt]=DIST,p[cnt]=mp(l,r);
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(v==fa||del[v])continue;
dfs(v,u,DIST+edge[i].cost);
}
}
void work(int u)
{
del[u]=1;
dist[++cnt]=0;p[cnt]=mp(0,0);
l=r=cnt;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(del[v])continue;
dfs(v,u,edge[i].cost);
r=cnt;
}
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(del[v])continue;
minn=INF,tot=size[v];
getroot(v,u);
work(root);
}
}
int f[2000005][20];
void rmq_init()
{
int n=cnt;
for(int i=1;i<=n;i++)f[i][0]=i;
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
{
int x=f[i][j-1],y=f[i+(1<<(j-1))][j-1];
f[i][j]=dist[x]>dist[y]?x:y;
}
}
int rmq(int l,int r)
{
int k=0;
while((1<<(k+1))<=r-l+1)k++;
int x=f[l][k],y=f[r-(1<<k)+1][k];
return dist[x]>dist[y]?x:y;
}
int main()
{
read(n,k);
init();
for1(i,n-1)
{
int a,b,c;
read(a,b,c);
addedge(a,b,c);
addedge(b,a,c);
}
memset(del,0,sizeof del); ///做题初始化
minn=INF,tot=n;
getroot(1,0); ///找到一棵树的重,tot为该树的大小....
work(root);
rmq_init();
for1(i,cnt)
{
if(p[i].fi==0)continue;///并不能到达任何点~~
que.push(dat(i,p[i].fi,p[i].se,rmq(p[i].fi,p[i].se)));
}
while(k--)
{
DAT cur=que.top();que.pop();
printf("%d\n",dist[cur.i]+dist[cur.t]);
if(cur.t-1>=cur.l)que.push(dat(cur.i,cur.l,cur.t-1,rmq(cur.l,cur.t-1)));
if(cur.t+1<=cur.r)que.push(dat(cur.i,cur.t+1,cur.r,rmq(cur.t+1,cur.r)));
}
}