T103489 【模板】边双连通分量

本文深入探讨了图算法中求解双连通分量的问题,通过Tarjan算法实现对图的深度优先搜索,识别并标记图中的割边,进而划分出双连通分量。文章详细解释了如何构建图的邻接表,进行深度优先遍历,以及如何利用低点和发现时间来判断割边。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

题目地址


易错点:

  • 设桥时需要考虑双向边.
  • dfs时需要设置当前点的dcc.

#include<cstdio>
#include<iostream>
using namespace std;
const int MAXN=1e5,MAXM=1e6;
struct Edge{
	int from,to,nxt;
}e[MAXM];
int head[MAXN],edgeCnt=1;
void addEdge(int u,int v){
	e[++edgeCnt].from=u;
	e[edgeCnt].to=v;
	e[edgeCnt].nxt=head[u];
	head[u]=edgeCnt;
}
int dfn[MAXN],low[MAXN],dfnCnt=0;
bool bridge[MAXM];
void tarjan(int x,int in_edge){
	dfn[x]=low[x]=++dfnCnt;
	for(int i=head[x];i;i=e[i].nxt){
		int nowV=e[i].to;
		if(!dfn[nowV]){
			tarjan(nowV,i);
			if(low[nowV]>dfn[x]){
				bridge[i]=bridge[i^1]=1;
			}
			low[x]=min(low[x],low[nowV]);
		}else if(i!=(in_edge^1)){
			low[x]=min(low[x],dfn[nowV]);
		}
	}
}
int inDcc[MAXN];
void dfs(int x,int nowDcc){
	inDcc[x]=nowDcc;
	for(int i=head[x];i;i=e[i].nxt){
		int nowV=e[i].to;
		if(inDcc[nowV]||bridge[i])continue;
		dfs(nowV,nowDcc);
	}
}
int main(){
	int n,m;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		int u,v;
		scanf("%d%d",&u,&v);
		addEdge(u,v);
		addEdge(v,u);
	}
	for(int i=1;i<=n;i++)
		if(!dfn[i])tarjan(i,0);
	int nowDcc=0;
	for(int i=1;i<=n;i++)
		if(!inDcc[i])dfs(i,++nowDcc);
	printf("%d\n",nowDcc);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值