题目:
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
思路:
斐波那契数列变体,关键是找出递推公式。
假设f(n),容易发现f(1)=1,f(2)=2; n>2时,如果最后一次竖着,一共有f(n-1)种放法,如果最后一次横着放两个,一共有f(n-2)种跳法。即f(n)=f(n-1)+f(n-2)。
代码:
在线测试OJ:
https://www.nowcoder.com/practice/72a5a919508a4251859fb2cfb987a0e6?tpId=13&tqId=11163&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking
AC代码:
class Solution {
public:
int rectCover(int number) {
if(number <= 0)
return 0;
if(number == 1)
return 1;
if(number == 2)
return 2;
int n_1 = 2;
int n_2 = 1;
int f_n;
for(int i = 3; i <= number; i++)
{
f_n = n_1 + n_2;
n_2 = n_1;
n_1 = f_n;
}
return f_n;
}
};