剑指offer:矩形覆盖

题目:

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路:

斐波那契数列变体,关键是找出递推公式。

假设f(n),容易发现f(1)=1,f(2)=2; n>2时,如果最后一次竖着,一共有f(n-1)种放法,如果最后一次横着放两个,一共有f(n-2)种跳法。即f(n)=f(n-1)+f(n-2)。

代码:

在线测试OJ:

https://www.nowcoder.com/practice/72a5a919508a4251859fb2cfb987a0e6?tpId=13&tqId=11163&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking

AC代码:

class Solution {
public:
    int rectCover(int number) {
	if(number <= 0)
		return 0;
	if(number == 1)
		return 1;
	if(number == 2)
		return 2;
        int n_1 = 2;
        int n_2 = 1;
	int f_n;
	for(int i = 3; i <= number; i++)
	{
		f_n = n_1 + n_2;
		n_2 = n_1;
		n_1 = f_n;
	}
	return f_n;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值