【最小生成树】ZOJ 2966 Build The Electric System

本文对比了使用Prim算法和Kruskal算法解决最小生成树问题的过程和实现,通过实例展示了两种算法的优缺点及具体操作步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意大致就是连通所有点的需要的最小代价,典型的最小生成树。本人用了Prim来算。

#include <iostream>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#define MAXN 1000
#define INF 1<<30
using namespace std;

int closest[MAXN],lowcost[MAXN],m;// m为节点的个数
int G[MAXN][MAXN];//邻接矩阵

void prim()
{
    for(int i=0;i<m;i++)
    {
        lowcost[i]=INF;
    }
    for(int i=0;i<m;i++)
    {
        closest[i]=0;
    }
    closest[0]=-1;//加入第一个点,-1表示该点在集合U中,否则在集合V中
    int num=0,ans=0,e=0;//e为最新加入集合的点
    while(num<m-1)//加入m-1条边
    {
        int micost=INF,miedge=-1;
        for(int i=0;i<m;i++)
            if(closest[i]!=-1)
            {
                int temp=G[e][i];
                if(temp<lowcost[i])
                {
                    lowcost[i]=temp;
                    closest[i]=e;
                }
                if(lowcost[i]<micost)
                micost=lowcost[miedge=i];
            }
        ans+=micost;
        closest[e=miedge]=-1;
        num++;
    }
    printf("%d\n",ans);
}

int main()
{
    int cas;
    int n;
    int u, v, w;
    scanf("%d", &cas);
    while(cas--)
    {
        scanf("%d%d", &m, &n);
        for(int i = 0; i <= m; i ++)
            for(int j = 0; j <= m; j ++)
            G[i][j]  = INF;
        while(n--)
        {
            scanf("%d%d%d", &u, &v, &w);
            G[u][v] = G[v][u] = w;
        }
        prim();
    }
    return 0;
}

下面是kruskal算法提交的代码:

#include <iostream>
#include <math.h>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#define Maxn 10000
using namespace std;

struct x
{
    int f, t, w;
} xx[20000];

bool cmp(x a, x b)
{
    return a.w < b.w;
}

int fa[1000];
int mincost, point_number, edge_number;

int fi(int x)
{
    if(x != fa[x])
        fa[x] = fi(fa[x]);
    return fa[x];
}

void kruskal()
{
    for(int i = 0; i <= point_number; i++)
        fa[i] = i;
    mincost = 0;
    for(int i = 0; i < edge_number; i ++)
    {
        int a = xx[i].f, b = xx[i].t;
        a = fi(a), b = fi(b);
        if(a != b)
        {
            fa[a] = b;
            mincost += xx[i].w;
        }
    }
    printf("%d\n", mincost);
}

int find(int x, int y)
{
    for(int i = 0; i < edge_number; i ++)
    {
        if(xx[i].f == x && xx[i].t == y)
            return i;
        if(xx[i].f == y && xx[i].t == x)
            return i;
    }
    return -1;
}

int main()
{
    int T;
    scanf("%d", &T);
    while(T--)
    {

        int m;
        edge_number = 0;
        scanf("%d%d", &point_number, &m);
        for(int i = 0; i < m; i++)
        {
            int a, b, c;
            scanf("%d%d%d", &a, &b, &c);
            int h = find(a,b);
            if(h != -1)
                xx[h].w = max(xx[h].w, c);
            else
            {
                xx[edge_number].f = a;
                xx[edge_number].t = b;
                xx[edge_number++].w = c;
            }
        }
        sort(xx, xx + edge_number, cmp);
        kruskal();
    }
    return 0;
}


### ZOJ 1088 线段树 解题思路 #### 题目概述 ZOJ 1088 是一道涉及动态维护区间的经典问题。通常情况下,这类问题可以通过线段树来高效解决。题目可能涉及到对数组的区间修改以及单点查询或者区间查询。 --- #### 线段树的核心概念 线段树是一种基于分治思想的数据结构,能够快速处理区间上的各种操作,比如求和、最大值/最小值等。其基本原理如下: - **构建阶段**:通过递归方式将原数组划分为多个小区间,并存储在二叉树形式的节点中。 - **更新阶段**:当某一段区间被修改时,仅需沿着对应路径向下更新部分节点即可完成全局调整。 - **查询阶段**:利用懒惰标记(Lazy Propagation),可以在 $O(\log n)$ 时间复杂度内完成任意范围内的计算。 具体到本题,假设我们需要支持以下两种主要功能: 1. 对指定区间 `[L, R]` 执行某种操作(如增加固定数值 `val`); 2. 查询某一位置或特定区间的属性(如总和或其他统计量)。 以下是针对此场景设计的一种通用实现方案: --- #### 实现代码 (Python) ```python class SegmentTree: def __init__(self, size): self.size = size self.tree_sum = [0] * (4 * size) # 存储区间和 self.lazy_add = [0] * (4 * size) # 延迟更新标志 def push_up(self, node): """ 更新父节点 """ self.tree_sum[node] = self.tree_sum[2*node+1] + self.tree_sum[2*node+2] def build_tree(self, node, start, end, array): """ 构建线段树 """ if start == end: # 到达叶节点 self.tree_sum[node] = array[start] return mid = (start + end) // 2 self.build_tree(2*node+1, start, mid, array) self.build_tree(2*node+2, mid+1, end, array) self.push_up(node) def update_range(self, node, start, end, l, r, val): """ 区间更新 [l,r], 加上 val """ if l <= start and end <= r: # 当前区间完全覆盖目标区间 self.tree_sum[node] += (end - start + 1) * val self.lazy_add[node] += val return mid = (start + end) // 2 if self.lazy_add[node]: # 下传延迟标记 self.lazy_add[2*node+1] += self.lazy_add[node] self.lazy_add[2*node+2] += self.lazy_add[node] self.tree_sum[2*node+1] += (mid - start + 1) * self.lazy_add[node] self.tree_sum[2*node+2] += (end - mid) * self.lazy_add[node] self.lazy_add[node] = 0 if l <= mid: self.update_range(2*node+1, start, mid, l, r, val) if r > mid: self.update_range(2*node+2, mid+1, end, l, r, val) self.push_up(node) def query_sum(self, node, start, end, l, r): """ 查询区间[l,r]的和 """ if l <= start and end <= r: # 完全匹配 return self.tree_sum[node] mid = (start + end) // 2 res = 0 if self.lazy_add[node]: self.lazy_add[2*node+1] += self.lazy_add[node] self.lazy_add[2*node+2] += self.lazy_add[node] self.tree_sum[2*node+1] += (mid - start + 1) * self.lazy_add[node] self.tree_sum[2*node+2] += (end - mid) * self.lazy_add[node] self.lazy_add[node] = 0 if l <= mid: res += self.query_sum(2*node+1, start, mid, l, r) if r > mid: res += self.query_sum(2*node+2, mid+1, end, l, r) return res def solve(): import sys input = sys.stdin.read data = input().split() N, Q = int(data[0]), int(data[1]) # 数组大小 和 操作数量 A = list(map(int, data[2:N+2])) # 初始化数组 st = SegmentTree(N) st.build_tree(0, 0, N-1, A) idx = N + 2 results = [] for _ in range(Q): op_type = data[idx]; idx += 1 L, R = map(int, data[idx:idx+2]); idx += 2 if op_type == 'Q': # 查询[L,R]的和 result = st.query_sum(0, 0, N-1, L-1, R-1) results.append(result) elif op_type == 'U': # 修改[L,R]+X X = int(data[idx]); idx += 1 st.update_range(0, 0, N-1, L-1, R-1, X) print("\n".join(map(str, results))) solve() ``` --- #### 关键点解析 1. **初始化与构建**:在线段树创建过程中,需要遍历输入数据并将其映射至对应的叶子节点[^1]。 2. **延迟传播机制**:为了优化性能,在执行批量更新时不立即作用于所有受影响区域,而是记录更改意图并通过后续访问逐步生效[^2]。 3. **时间复杂度分析**:由于每层最多只访问两个子树分支,因此无论是更新还是查询都维持在 $O(\log n)$ 范围内[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值