【数学 逆元】zoj 3609 Modular Inverse

本文详细介绍了扩展欧几里得算法的实现原理及应用,通过C++代码示例展示了如何求解最大公约数及逆元。适用于解决数学问题和编程竞赛中涉及的整数除法和最大公约数等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
using namespace std;

int x,y,q;

void extend_Eulid(int a,int b)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        q = a;
    }
    else
    {
        extend_Eulid(b,a%b);
        int temp = x;
        x = y;
        y = temp - a/b*y;
    }
}

int gcd(int a, int b)
{
    if(b == 0)
        return a;
    return gcd(b, a % b);

}

int main()
{
    int t;
    while(scanf("%d", &t) != EOF)
    {
        for(int i=0; i<t; i++)
        {
            int a, m;
            scanf("%d%d", &a, &m);
            if (m ==  1)
            {
                printf("1\n");
                continue;
            }
            if(gcd(a, m) != 1)
            {
                puts("Not Exist");
                continue;
            }
            extend_Eulid(a,m);
            x += m;
            x %= m;
            printf("%d\n",x);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值