引言
随着大语言模型(LLM)在各个领域的广泛应用,高效的推理引擎成为了部署这些模型的关键。Ollama 和 vLLM 作为当前最流行的两种推理引擎,各自有着独特的优势和适用场景。
本文将从并发性能的角度,对 Ollama 和 vLLM 进行深度对比,帮助读者更好地选择适合自己的推理框架。
一、背景介绍
1.1 Ollama
Ollama 是一个简单易用的 LLM 部署工具,以其简洁的安装和用户友好的界面而闻名。它支持多种模型架构,并提供了丰富的命令行工具和图形化界面,适合快速原型设计和小规模部署。
1.2 vLLM
vLLM(Very Large Language Model)是一个高性能的推理引擎,专注于大规模语言模型的高效推理。它通过动态批处理、显存优化和多 GPU 支持,显著提升了推理速度和资源利用率。
二、前期准备
测试环境准备
GPU型号:单块 NVIDIA GeForce RTX 4090 显卡
Ollama部署模型:同参数的 DeepSeek-R1 量化模型
vLLM部署模型: 同参数的 DeepSeek-R1-Distill-Qwen 蒸馏模型
Locust 压测工具
Locust 是一个强大的、易于使用的开源压测工具,它允许你编写 Python 脚本模拟大量并发用户进行压力测