Flink实战案例(五): Flink管理Kafka的消费偏移量

本文详细介绍了Flink如何利用检查点机制与Kafka协同工作,确保消息处理的Exactly-Once语义。通过Flink的Kafka消费者状态(Kafka分区的读取偏移量)保存在检查点中,当发生故障时,Flink可以从最近的检查点恢复,从而提供一致性保障。文中通过步骤展示了Flink如何进行状态快照、存储和恢复,强调了在POC和生产环境中,状态通常存储于外部文件系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这篇文章中我们将结合例子逐步讲解 Flink 是如何与 Kafka 工作来确保将 Kafka Topic 中的消息以 Exactly-Once 语义处理。

检查点(Checkpoint)是一种能使 Flink 从故障恢复的内部机制。检查点是 Flink 应用程序状态的一致性副本,包括了输入的读取位点。如果发生故障,Flink 通过从检查点加载应用程序状态来恢复应用程序,并从恢复的读取位点继续处理,就好像什么事情都没发生一样。你可以把检查点理解为电脑游戏的存档。如果你在游戏中存档之后发生了什么事情,你可以随时读档重来一次。

检查点使 Flink 具有容错能力,并确保在发生故障时也能保证流应用程序的语义。检查点每隔固定的间隔来触发,该间隔可以在应用中配置。

Flink 中的 Kafka 消费者是一个有状态的算子(operator)并且集成了 Flink 的检查点机制,它的状态是所有 Kafka 分区的读取偏移量。当一个检查点被触发时,每一个分区的偏移量都保存到这个检查点中。Flink 的检查点机制保证了所有算子任务的存储状态都是一致的,即它们存储状态都是基于相同的输入数据。当所有的算子任务成功存储了它们的状态,一个检查点才成功完成。因此,当从潜在的系统故障中恢复时,系统提供了 Excatly-Once 的状态更新语义。

下面我们将一步步的介绍 Flink 如何对 Kafka 消费偏移量做检查点的。在本文的例子中,数据存储在 Flink 的 JobMaster 中。值得注意的是,在 POC 或生产用例下,这些数据通常是存储到一个外部文件系统(如HDFS或S3)中。

1. 第一步

  如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知无(import_bigdata)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值