介绍
电磁场优化算法(Electromagnetism-like Algorithm, EMA)是一种基于电磁场理论的全局优化算法。它模拟带电粒子在电磁场中的相互作用,通过模拟带电粒子之间的引力和斥力来优化目标函数。电磁场优化算法由Birbil和Frenk在2003年提出,是一种有效的随机搜索算法,广泛应用于各种优化问题
基本原理
电磁场优化算法的基本思想是将优化问题中的解视为带电粒子,这些粒子在一个模拟的电磁场中相互作用。每个粒子的电荷量与其适应度值相关,电荷量大的粒子对其他粒子的吸引力大,反之则吸引力小。通过模拟带电粒子之间的相互作用,粒子逐渐向优化问题的最优解靠近
算法步骤
电磁场优化算法的主要步骤包括初始化、计算电荷、计算总力、移动粒子和迭代更新。下面详细描述每个步骤:
初始化:生成初始粒子群,随机分布在搜索空间内。
计算电荷:根据每个粒子的适应度值计算其电荷量。电荷量通常根据适应度值归一化计算,以确保电荷量在0到1之间。
计算总力:计算每个粒子受到的总电磁力。总电磁力由引力和斥力组成,引力和斥力的大小与粒子间的距离和电荷量相关。
移动粒子:根据总电磁力更新每个粒子的位置。粒子沿总力方向移动,移动步长与力的大小成正比。
迭代更新:重复计算电荷、计算总力和移动粒子的步骤,直到达到预定的迭代次数或满足终止条件。
本文代码
我们将使用电磁场优化算法来优化一个支持向量机(SVM)分类器的超参数(如C和gamma)。我们将使用电磁场优化算法来搜索最佳的超参数组合,以最大化分类器在验证集上的性能。
核心代码
function em_algorithm_svm()
% 加载数据集(例如,使用鸢尾花数据集)
data = load('iris.mat');
X = data.iris(:, 1:4); % 特征
Y = data.iris(:, 5); % 标签
% 参数设置
num_particles = 30; % 粒子数量
num_dimensions = 2; % 维度数量(C和gamma)
max_iterations = 50; % 最大迭代次数
bounds = [0.01, 100]; % 超参数C和gamma的搜索边界
% 初始化粒子群
particles = initialize_particles(num_particles, num_dimensions, bounds);
% 迭代优化
for iter = 1:max_iterations
% 计算适应度值
fitness_values = evaluate_fitness(particles, X, Y);
% 计算电荷量
charges =