《AI从0到0.5》之大模型时代

        

目录

什么是大模型

大模型是人工智能历史的突变和涌现

大模型的大脑和心脏

大模型带来的危机

---能源危机---

---引发知识革命---

---对人类存在的威胁---

参考文献

关注我,躺不平就一起卷吧


        美国人工智能研究公司OpenAI异军突起:

        ● 2020年4月发布神经网络Jukebox;

        ● 2020年5月发布GPT-3,模型参数量为1750亿;

        ● 2020年6月开放人工智能应用程序接口;

        ● 2021年1月发布连接文本和图像神经网络CLIP;

        ● 2021年1月发布从文本创建图像神经网络DALL-E;

        ● 2022年11月,正式推出对话交互式的ChatGPT。相比GPT-3,ChatGPT引入了基于人类反馈的强化学习(RLHF)技术以及奖励机制。

        ChatGPT证明了通过一个具有高水平结构复杂性和大量参数的大模型(foundation model,又称为“基础模型”)可以实现深度学习

        人们形成关于大模型的基本共识:大模型大语言模型(LLM),也是多模态模型,或者是生成式预训练转换模型。GPT是大模型的一种形态,引发了人工智能生成内容(AIGC)技术的质变。大模型是人工智能赖以生存和发展的基础现在,与其说人类开始进入人工智能时代,不如说人类进入的是大模型时代

什么是大模型

        人工智能的模型,与通常的模型一样,是数学统计学为算法基础的,可以用来描述一个系统或者一个数据集。在机器学习中,模型是核心概念模型通常是一个函数或者一组函数,可以是线性函数、非线性函数、决策树、神经网络等各种形式。模型的本质就是对这个函数映射的描述和抽象通过对模型进行训练和优化,可以得到更加准确和有效的函数映射建立模型的目的是希望从数据中找出一些规律和模式,并用这些规律和模式预测未来的结果模型的复杂度可以理解为模型所包含的参数数量和复杂度,复杂度越高,模型越容易过拟合。

        人工智能大模型的“”,是指模型参数至少达到1亿。但是这个标准一直在提高,目前很可能已经有了万亿参数以上的模型。GPT-3的参数规模就已经达到了1750亿

        大模型可以定义为大语言模型,具有大规模参数和复杂网络结构的语言模型。与传统语言模型(如生成性模型、分析性模型、辨识性模型)不同,大语言模型通过在大规模语料库上进行训练来学习语言的统计规律,在训练时通常通过大量的文本数据进行自监督学习,从而能够自动学习语法、句法、语义等多层次的语言规律。

        近几年,比较有影响力的AI大模型主要来自谷歌(LaMDA、BERT和PaLM-E)、Meta(LLaMA)和OpenAI(GPT)。在中国,AI大模型的主要代表是百度文心一言阿里通义千问华为盘古

        这些模型的共同特征是:需要在大规模数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT搬砖客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值