POJ 3984 - 迷宫问题(BFS)

本文介绍了一种使用广度优先搜索(BFS)算法来寻找迷宫中从起点到终点最短路径的方法。给定了一个5x5的二维数组表示的迷宫,通过BFS算法实现了路径的查找,并输出了从左上角到右下角的具体路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

定义一个二维数组:
int maze[5][5] = {

 0, 1, 0, 0, 0,

 0, 1, 0, 1, 0,

 0, 0, 0, 0, 0,

 0, 1, 1, 1, 0,

 0, 0, 0, 1, 0,

};

它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。

Input

一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。

Output

左上角到右下角的最短路径,格式如样例所示。

Sample Input

0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

Sample Output

(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)

                                                     

bfs打印路径。

CODE:

#include<stdio.h>
#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
struct Step
{
    int x;
    int y;
    //Step(int_x,int_y):x(0),y(0);
};
int maze[5][5],vis[5][5],d[5][5];
int dx[]={0,0,1,-1},dy[]={1,-1,0,0};

void print(int x,int y)
{
    int p=d[x][y];
    if(p!=-1)
        print(x-dx[p],y-dy[p]);
    printf("(%d, %d)\n",x,y);
}

void bfs(int sx,int sy,int fx,int fy)
{
    queue<Step>que;
    Step now={sx,sy};
    que.push(now);
    vis[sx][sy]=1;
    while(!que.empty())
    {
        now=que.front();
        que.pop();
        for(int i=0;i<4;i++)
        {
            Step n={now.x+dx[i],now.y+dy[i]};
            if(n.x>=sx&&n.x<=fx&&n.y>=sy&&n.y<=fy&&!vis[n.x][n.y]&&maze[n.x][n.y]!=1)
            {
                d[n.x][n.y]=i;
                vis[n.x][n.y]=1;
                que.push(n);
            }
            if(n.x==fx&&n.y==fy)
                break;
        }
    }
    print(fx,fy);
}
int main()
{
    //freopen("A.txt","r",stdin);
    memset(vis,0,sizeof(vis));
    memset(d,-1,sizeof(d));
    for(int i=0;i<5;i++)
      for(int j=0;j<5;j++)
      {
         scanf("%d",&maze[i][j]);
      }
    bfs(0,0,4,4);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值