函数间断点 | 可去间断点 / 第一类间断点 / 第二类间断点 / 狄利克雷函数和黎曼函数示例

注:机翻,未校。


Basic Definitions and Examples

基本定义与示例

在这里插入图片描述

Definition 5:If a point of discontinuity a∈Ea\in EaE of the function f:E→Rf:E\to\mathbb{R}f:ER is such that there exists a continuous function f~:E→R\tilde{f}:E\to\mathbb{R}f~:ER such that f∣E\a=f~∣E\af|_{E\backslash a}=\tilde{f}|_{E\backslash a}fE\a=f~E\a , then aaa is called a removable discontinuity of the function fff .

定义 5:如果函数 f:E→Rf:E\to\mathbb{R}f:ER 存在不连续点 a∈Ea\in EaE ,并且存在一个连续函数 f~:E→R\tilde{f}:E\to\mathbb{R}f~:ER ,使得 fffE∖{a}E\setminus\{a\}E{a} (即集合 EEE 中去掉元素 aaa )上的限制等于 f~\tilde{f}f~E∖{a}E\setminus\{a\}E{a} 上的限制,那么 aaa 就被称作函数 fff 的可去间断点。

Thus a removable discontinuity is characterized by the fact that the limit lim⁡E∋x→af(x)=A\lim_{E\ni x\to a}f(x)=AlimExaf(x)=A exists, but A≠f(a)A\neq f(a)A=f(a) , and it suffices to set

f~(x)={f(x)for x∈E,x≠aAfor x=a\tilde{f}(x)=\begin{cases} f(x) & \text{for }x\in E,x\neq a\\ A & \text{for }x = a \end{cases}f~(x)={f(x)Afor xE,x=afor x=a
in order to obtain a function f~:E→R\tilde{f}:E\to\mathbb{R}f~:ER that is continuous at aaa .

因此,可去间断点的特点在于极限 lim⁡E∋x→af(x)=A\lim_{E\ni x\to a}f(x)=AlimExaf(x)=A 是存在的,但 AAA 不等于 f(a)f(a)f(a) ,并且只需设定

f~(x)={f(x)对于 x∈E且x≠aA对于 x=a\tilde{f}(x)=\begin{cases} f(x) & \text{对于 }x\in E且x\neq a\\ A & \text{对于 }x = a \end{cases}f~(x)={f(x)A对于 xEx=a对于 x=a

这样就能得到一个在 aaa 点连续的函数 f~:E→R\tilde{f}:E\to\mathbb{R}f~:ER

Example 10:The function

f(x)={sin⁡1x,for x≠00,for x=0f(x)=\begin{cases} \sin\frac{1}{x}, & \text{for }x\neq 0\\ 0, & \text{for }x = 0 \end{cases}f(x)={sinx1,0,for x=0for x=0
is discontinuous at 0. Moreover, it does not even have a limit as x→0x\to 0x0 , since, as was shown Example 5 in Sect. 3.2.1, lim⁡x→0sin⁡1x\lim_{x\to 0}\sin\frac{1}{x}limx0sinx1 does not exist. The graph of the function sin⁡1x\sin\frac{1}{x}sinx1 is shown in Fig. 4.1.

例 10:函数

f(x)={sin⁡1x,当 x≠00,当 x=0f(x)=\begin{cases} \sin\frac{1}{x}, & \text{当 }x\neq 0\\ 0, & \text{当 }x = 0 \end{cases}f(x)={sinx1,0, x=0 x=0
000 点是不连续的。而且,当 xxx 趋向于 000 时它甚至没有极限,因为正如在 3.2.1 节例 5 中所展示的那样, lim⁡x→0sin⁡1x\lim_{x\to 0}\sin\frac{1}{x}limx0sinx1 这个极限是不存在的。函数 sin⁡1x\sin\frac{1}{x}sinx1 的图像如图 4.1 所示。

Examples 8, 9 and 10 explain the following terminology.

例 8、9 和 10 解释了以下术语。

Definition 6:The point a∈Ea\in EaE is called a discontinuity of first kind for the function f:E→Rf:E\to\mathbb{R}f:ER if the following limits 2^22 exist:
lim⁡E∋x→a−0f(x):=f(a−0),lim⁡E∋x→a+0f(x):=f(a+0),\lim_{E\ni x\to a - 0}f(x):=f(a - 0),\quad\lim_{E\ni x\to a + 0}f(x):=f(a + 0),limExa0f(x):=f(a0),limExa+0f(x):=f(a+0),
but at least one of them is not equal to the value f(a)f(a)f(a) that the function assumes at aaa .

定义 6:对于函数 f:E→Rf:E\to\mathbb{R}f:ER 来说,如果点 a∈Ea\in EaE 满足以下极限 2^22 存在:

lim⁡E∋x→a−0f(x):=f(a−0)(这里lim⁡E∋x→a−0f(x)表示x从a的左侧趋近于a时f(x)的极限,记为f(a−0)),\lim_{E\ni x\to a - 0}f(x):=f(a - 0)\text{(这里}\lim_{E\ni x\to a - 0}f(x)\text{表示}x\text{从}a\text{的左侧趋近于}a\text{时}f(x)\text{的极限,记为}f(a - 0)\text{)},limExa0f(x):=f(a0)(这里limExa0f(x)表示xa的左侧趋近于af(x)的极限,记为f(a0),

lim⁡E∋x→a+0f(x):=f(a+0)(表示x从a的右侧趋近于a时f(x)的极限,记为f(a+0)),\lim_{E\ni x\to a + 0}f(x):=f(a + 0)\text{(表示}x\text{从}a\text{的右侧趋近于}a\text{时}f(x)\text{的极限,记为}f(a + 0)\text{)},limExa+0f(x):=f(a+0)(表示xa的右侧趋近于af(x)的极限,记为f(a+0), 但至少其中一个极限值不等于函数 fffaaa 点所取的值 f(a)f(a)f(a) ,那么点 aaa 就被称为函数 fff 的第一类间断点。

2^22 If aaa is a discontinuity, then aaa must be a limit point of the set EEE . It may happen, however, that all the points of EEE in some neighborhood of aaa lie on one side of aaa . In that case, only one of the limits in this definition is considered.

2^22 如果 aaa 是一个间断点,那么 aaa 必定是集合 EEE 的极限点。然而,有可能出现这样的情况:在 aaa 的某个邻域内,集合 EEE 中的所有点都位于 aaa 的一侧。在这种情况下,此定义中只考虑这两个极限(即左极限和右极限)中的一个。

Definition 7:If a∈Ea\in EaE is a point of discontinuity of the function f:E→Rf:E\to\mathbb{R}f:ER and at least one of the two limits in Definition 6 does not exist, then aaa is called a discontinuity of second kind.

定义 7:如果 a∈Ea\in EaE 是函数 f:E→Rf:E\to\mathbb{R}f:ER 的一个间断点,并且定义6中的两个极限(即左极限和右极限)至少有一个不存在,那么 aaa 就被称作第二类间断点。

Thus what is meant is that every point of discontinuity that is not a discontinuity of first kind is automatically a discontinuity of second kind.

这意味着,每一个不是第一类间断点的间断点,自然就属于第二类间断点。

Let us present two more classical examples.

让我们再给出两个经典的例子。

Example 11:The function

D(x)={1,if x∈Q0,if x∈R\Q\mathcal{D}(x)=\begin{cases} 1, & \text{if }x\in\mathbb{Q}\\ 0, & \text{if }x\in\mathbb{R}\backslash\mathbb{Q} \end{cases}D(x)={1,0,if xQif xR\Q
is called the Dirichlet function. 3^33

例11:函数
D(x)={1,若 x∈Q(即x是有理数)0,若 x∈R∖Q(即x是无理数)\mathcal{D}(x)=\begin{cases} 1, & \text{若 }x\in\mathbb{Q}(即x是有理数)\\ 0, & \text{若 }x\in\mathbb{R}\setminus\mathbb{Q}(即x是无理数) \end{cases}D(x)={1,0, xQ(即x是有理数) xRQ(即x是无理数)

被称作狄利克雷函数。 3^33

This function is discontinuous at every point, and obviously all of its discontinuities are of second kind, since in every interval there are both rational and irrational numbers.

这个函数在每一点都是不连续的,而且显然它所有的间断点都属于第二类间断点,因为在每一个区间内都既有有理数又有无理数。

Example 12:Consider the Riemann function 4^44

R(x)={1n,if x=mn∈Q, where mn is in lowest terms,n∈N0,if x∈R\Q\mathcal{R}(x)=\begin{cases} \frac{1}{n}, & \text{if }x=\frac{m}{n}\in\mathbb{Q},\text{ where }\frac{m}{n}\text{ is in lowest terms}, n\in\mathbb{N}\\ 0, & \text{if }x\in\mathbb{R}\backslash\mathbb{Q} \end{cases}R(x)={n1,0,if x=nmQ, where nm is in lowest terms,nNif xR\Q

例 12:考虑黎曼函数 4^44

R(x)={1n,若 x=mn∈Q(即x是有理数,且mn是最简分数形式,n∈N)0,若 x∈R∖Q(即x是无理数)\mathcal{R}(x)=\begin{cases} \frac{1}{n}, & \text{若 }x=\frac{m}{n}\in\mathbb{Q}(即x是有理数,且\frac{m}{n}是最简分数形式,n\in\mathbb{N})\\ 0, & \text{若 }x\in\mathbb{R}\setminus\mathbb{Q}(即x是无理数) \end{cases}R(x)={n1,0, x=nmQ(即x是有理数,且nm是最简分数形式,nN xRQ(即x是无理数)

We remark that for any point a∈Ra\in\mathbb{R}aR , any bounded neighborhood U(a)U(a)U(a) of it, and any number N∈NN\in\mathbb{N}NN , the neighborhood U(a)U(a)U(a) contains only a finite number of rational numbers mn\frac{m}{n}nm , m∈Zm\in\mathbb{Z}mZ , n∈Nn\in\mathbb{N}nN , with n<Nn < Nn<N .

我们要指出的是,对于任意实数 a∈Ra\in\mathbb{R}aR ,它的任意有界邻域 U(a)U(a)U(a) 以及任意自然数 N∈NN\in\mathbb{N}NN ,邻域 U(a)U(a)U(a) 中只包含有限个有理数 mn\frac{m}{n}nm (其中 m∈Zm\in\mathbb{Z}mZn∈Nn\in\mathbb{N}nN 并且 n<Nn < Nn<N )。

By shrinking the neighborhood, one can then assume that the denominators of all rational numbers in the neighborhood (except possibly for the point aaa itself if a∈Qa\in\mathbb{Q}aQ ) are larger than NNN . Thus at any point x∈U˙(a)x\in\dot{U}(a)xU˙(a) we have ∣R(x)∣<1/N|\mathcal{R}(x)| < 1/NR(x)<1/N .

通过缩小这个邻域,我们可以假定邻域内(除了可能的点 aaa 本身,如果 aaa 是有理数的话)所有有理数的分母都大于 NNN 。因此,对于任意点 x∈U˙(a)x\in\dot{U}(a)xU˙(a) (这里 U˙(a)\dot{U}(a)U˙(a) 表示去心邻域),我们有 ∣R(x)∣<1/N|\mathcal{R}(x)| < 1/NR(x)<1/N

We have thereby shown that

lim⁡x→aR(x)=0\lim_{x\to a}\mathcal{R}(x)=0limxaR(x)=0

at any point a∈R\Qa\in\mathbb{R}\backslash\mathbb{Q}aR\Q . Hence the Riemann function is continuous at any irrational number. At the remaining points, that is, at points x∈Qx\in\mathbb{Q}xQ , the function is discontinuous, except at the point x=0x = 0x=0 , and all of these discontinuities are discontinuities of first kind.

由此我们证明了,对于任意无理数点 a∈R∖Qa\in\mathbb{R}\setminus\mathbb{Q}aRQ ,都有 lim⁡x→aR(x)=0\lim_{x\to a}\mathcal{R}(x)=0limxaR(x)=0 。因此,黎曼函数在任意无理数点处是连续的。在其余的点,也就是有理数点 x∈Qx\in\mathbb{Q}xQ 处,该函数是不连续的,除了 x=0x = 0x=0 这一点,并且这些间断点都是第一类间断点。

3^33 P.G. Dirichlet (1805–1859) – great German mathematician, an analyst who occupied the post of professor ordinarius at Göttingen University after the death of Gauss in 1855.

3^33 P.G.狄利克雷(1805 - 1859)——伟大的德国数学家,分析学家,在1855年高斯去世后,他担任哥廷根大学正教授这一职位。

4^44 B.F. Riemann (1826–1866) – outstanding German mathematician whose ground-breaking works laid the foundations of whole areas of modern geometry and analysis.

4^44 B.F.黎曼(1826 - 1866)——杰出的德国数学家,他那些开创性的工作为现代几何和分析的多个领域奠定了基础。


via: Zorich

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值