保障医学诊断安全性:探索对抗性攻击评估医学图像分析模型的重要性
在当今数字化医疗领域,人工智能技术的应用已经成为医学诊断和治疗的重要工具。然而,随着人工智能技术的不断发展,对抗性攻击也逐渐成为医学图像分析模型面临的一项严峻挑战。想象一下,如果医学图像分析模型受到对抗性攻击,可能会导致误诊或错误的治疗建议,对患者的健康造成严重影响。因此,评估模型的鲁棒性和安全性变得至关重要
模型鲁棒性
模型对于输入样本扰动和对抗样本的性能,可以简单的理解为模型抵御外界攻击的安全性与内部的可靠性。
对抗性攻击
定义
通过在输入图像中人为引入视觉上无法察觉的扰动使得模型以高置信度给出错误的输出。
类别
- 白盒攻击:攻击者拥有目标模型的全部信息,也可以无限制地访问目标网络模型的推理输出。
- 灰盒(半白盒)攻击:主要集中在构建生成模型,以生成针对目标网络模型的对抗示例。一般来说,灰盒攻击者在白盒环境中训练对抗生成器,而在推理(对抗生成)阶段不需要访问目标网络模型。
- 黑盒攻击:只能通过有限的查询次数访问网络模型输出,对数据集及模型不完全了解。
- 无盒(受限黑盒)攻击:无法访问目标诊断模型,数据集及模型结构未知。
辅助诊断模型的对抗性攻击实例
在白盒环境下,通过求出模型对输入的导数,然后用符号函数得到其具体的梯度方