
高斯消元
里阿奴摩西
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[高斯消元 物理] BZOJ 2419 电阻
首先我们设电流为1A 终点电势为零 点i的电势为Ui由于电流是流 显然对于每个点(点1和点n除外) 有总流入等于总流出 即Σ(Ui-Uj)/Rij=0 (i!=1,i!=n)Σ(U1-Uj)/R1j=1Σ(Un-Uj)/Rnj=-1Un=0联立方程组高斯消元即可 最后输出点1的电势就是答案#include#include#includ原创 2016-04-29 07:13:21 · 622 阅读 · 0 评论 -
[AC自动机 概率DP 矩阵乘法||高斯消元] BZOJ 1444 [Jsoi2009]有趣的游戏
AC自动机建转移矩阵 然后要么矩阵乘法 无限迭代 数据范围小可以接受#include#include#include#includeusing namespace std;typedef long double ld;//typedef double ld;inline char nc(){ static char buf[100000],*p1=buf,*原创 2016-07-21 08:44:58 · 811 阅读 · 0 评论 -
[概率 高斯消元 逆矩阵] BZOJ 3640 JC的小苹果
%%%jiry_2把点根据血量拆开进行高斯消元, O(n3hp3)。根据 hp 可以把图分成 hp 层,第 i 层对 j(i > j) 层是没有影响的。每层之间高斯消元,层与层之间递推, O(n3hp)。每一次高斯消元的系数矩阵都是相同的,可以先高斯消元一次预处理,之后消元的时候带入就行了, O(n2hp + n3)。#include#include原创 2016-08-28 18:47:15 · 685 阅读 · 0 评论 -
[特征根法 || 高斯消元] 51Nod 1653 算法马拉松19 E 夹克赌坊
这道题先是很happy的打了个高斯消元#include#include#include#include#define cl(x) memset(x,0,sizeof(x))using namespace std;typedef long double ld;const int N=200005;const ld eps=1e-15;int S,W,A,n;ld原创 2016-10-31 18:18:05 · 613 阅读 · 0 评论 -
[莫比乌斯反演 高斯消元 数学技巧] BZOJ 3601 一个人的数论
推导过程直接拉过来不是很好 看这位神犇的吧http://www.cnblogs.com/jianglangcaijin/p/4033399.html#include#include#includeusing namespace std;typedef long long ll;const ll P=1e9+7;inline ll Pow(ll a,ll b)原创 2016-12-26 18:43:19 · 549 阅读 · 0 评论 -
[期望 DP || 高斯消元 KMP] BZOJ 3213 [Zjoi2013]抛硬币
这个其实也不复杂 先kmp 可以发现 每个点的状态会从转移到 i+1 和 next[i] 不妨设为f然后列出方程 直接就可以上高斯消元 大概80?这个东西其实可以DPE(i+1)=(E(i)-1-p[t^1]*E(f))/p[t]E(i)=k[i]*E(0)-b[i]k[i+1]*E(i+1)-b[i+1]=(k[i]*E(0)-b[i]-1-p[t^1]*(k[f]*原创 2017-01-19 06:55:33 · 1245 阅读 · 0 评论 -
[高斯消元 概率 KMP] BZOJ 4820 [Sdoi2017]硬币游戏
一个直观的想法 是建AC自动机 然后消元 但是这样变量个数是O(nm)O(nm) 然后我就不会做了 概率题都好妙啊 一个精妙的设计是再定义一个状态N 表示当前串不包含任何人的概率 举个例子 来自这里 例如: A=TTH, B=HTT 那么N+TTH一定会到终止点,但不一定TTH加完后才停止 NTTH = A + BH + BTH 0.125N = A + 0.75B原创 2017-05-04 08:00:13 · 1142 阅读 · 0 评论