AI视野·今日CS.CV 计算机视觉论文速览
Tue, 6 Aug 2019
Totally 63 papers
?上期速览✈更多精彩请移步主页
Interesting:
?学习引导网络用于深度补全技术,用于补全激光雷达数据的现有方法主要将rgb特征与深度信息特征进行衔接或者相加。这篇文章基于引导图像滤波的想法,设计除了一种新颖的引导网络用于从引导的rgb图像中预测出深度抽取核的权重,并将核用于从深度信息中抽取特征。这样的方法可以实现依赖于内容和空间变化的多模态融合。为了减小动态生成空间变化核带来的gpu消耗,文章中还提出了卷积分解来减少计算和内存的消耗,是的多级特征融合机制成为可能。(from 加拿大西蒙弗雷泽大学,GrUVi Lab)
文章中提出的架构包含两个子网络,引导网络和深度网络,其中包含了一系列编码和解码过程,并使用了3*3残差单元作为疾病结构。
上图中的引导模块首先基于图像得到引导特征,并与输入的稀疏特征作用得到新的深度特征。其中作用的部分利用卷积分解的方法将运算分解为了逐通道的卷积和交叉通道卷积两个部分:
最终得到的结果,可以看到在很多细节上恢复很好:
对引导核的可视化:
最后是在纽约深度数据上200点和500点的采样重建结果比较:
?