✍️作者简介:小北编程(专注于HarmonyOS、Android、Java、Web、TCP/IP等技术方向)
🐳博客主页: 开源中国、稀土掘金、51cto博客、博客园、知乎、简书、慕课网、CSDN
🔔如果文章对您有一定的帮助请👉关注✨、点赞👍、收藏📂、评论💬。
🔥如需转载请参考【转载须知】
文章目录
一、自然语言处理简介
自然语言处理 (NLP, Natural Language Processing) 又称为计算语言学,是一门借助计算机技术研究人类语言的科学。虽然 NLP 只有六七十年的历史,但是这门学科发展迅速且取得了令人印象深刻的成果。
在上手实践之前,我想先花点时间给大家介绍一下 NLP 的发展历史和 Transformer 模型相关的概念,这对于后期理解模型结构以及自己设计方法会有很大的帮助。
二、自然语言处理的发展简史
自然语言处理(NLP)的发展经历了几个主要阶段,每个阶段都代表着该领域技术和方法的重要演进。以下是自然语言处理主要阶段的概述:
-
早期阶段(1950 - 1960):
- 特点: NLP的起源可以追溯到计算机诞生之初,这个阶段主要集中在理论探索和基础研究上。
- 关键事件: 图灵在1950年提出了著名的“图灵测试”,标志着对计算机理解和模拟人类语言能力的思考。
-
知识工程时期(1970 - 1980):
- 特点: 着眼于通过手工制定规则和知识库来解决语言理解问题。
- 方法: 基于规则的系统和专家系统成为主流,但面临复杂性和知识获取难题。
-
统计方法和机器学习的崛起(1990 - 2000):
- 特点: 引入统计方法和机器学习技术,加速了语言处理的发展。
- 方法: 包括基于统计模型的语言模型、马尔可夫模型等,逐渐超越了基于规则的传统方法。
-
深度学习时代(2010 至今):
- 特点: 深度学习的兴起推动了自然语言处理的巨大飞跃,使得计算机更好地理解和生成人类语言。
- 方法: 利用深度神经网络,如循环神经网络(RNN)和变压器(Transformer),取得了在语言建模、翻译和情感分析等任务上的显著成果。
总体而言,自然语言处理经历了从早期理论探索到知识工程、再到统计方法和机器学习的过渡,最终进入了深度学习时代。这个演进过程反映了在不同技术和方法的推动下,NLP在理解和处理人类语言方面取得的显著进展。