NLP自然语言处理的发展回顾与浅析

✍️作者简介:小北编程(专注于HarmonyOS、Android、Java、Web、TCP/IP等技术方向)
🐳博客主页: 开源中国稀土掘金51cto博客博客园知乎简书慕课网CSDN
🔔如果文章对您有一定的帮助请👉关注✨、点赞👍、收藏📂、评论💬。
🔥如需转载请参考【转载须知】

在这里插入图片描述

一、自然语言处理简介

在这里插入图片描述

自然语言处理 (NLP, Natural Language Processing) 又称为计算语言学,是一门借助计算机技术研究人类语言的科学。虽然 NLP 只有六七十年的历史,但是这门学科发展迅速且取得了令人印象深刻的成果。

在上手实践之前,我想先花点时间给大家介绍一下 NLP 的发展历史和 Transformer 模型相关的概念,这对于后期理解模型结构以及自己设计方法会有很大的帮助。

二、自然语言处理的发展简史

自然语言处理(NLP)的发展经历了几个主要阶段,每个阶段都代表着该领域技术和方法的重要演进。以下是自然语言处理主要阶段的概述:

在这里插入图片描述

  1. 早期阶段(1950 - 1960):

    • 特点: NLP的起源可以追溯到计算机诞生之初,这个阶段主要集中在理论探索和基础研究上。
    • 关键事件: 图灵在1950年提出了著名的“图灵测试”,标志着对计算机理解和模拟人类语言能力的思考。
  2. 知识工程时期(1970 - 1980):

    • 特点: 着眼于通过手工制定规则和知识库来解决语言理解问题。
    • 方法: 基于规则的系统和专家系统成为主流,但面临复杂性和知识获取难题。
  3. 统计方法和机器学习的崛起(1990 - 2000):

    • 特点: 引入统计方法和机器学习技术,加速了语言处理的发展。
    • 方法: 包括基于统计模型的语言模型、马尔可夫模型等,逐渐超越了基于规则的传统方法。
  4. 深度学习时代(2010 至今):

    • 特点: 深度学习的兴起推动了自然语言处理的巨大飞跃,使得计算机更好地理解和生成人类语言。
    • 方法: 利用深度神经网络,如循环神经网络(RNN)和变压器(Transformer),取得了在语言建模、翻译和情感分析等任务上的显著成果。

总体而言,自然语言处理经历了从早期理论探索到知识工程、再到统计方法和机器学习的过渡,最终进入了深度学习时代。这个演进过程反映了在不同技术和方法的推动下,NLP在理解和处理人类语言方面取得的显著进展。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小北编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值