- 博客(26)
- 资源 (1)
- 收藏
- 关注
转载 piotr_toolbox工具包使用简介
gradientMag发现了一个很有用的图像处理工具箱:http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html。 下载下来工具箱,将其解压,通过下面两行代码将此工具箱的文件放到MATLAB的可查询路径: addpath(genpath(‘D:\piotr_toolbox\toolbox’)); savepath;
2016-11-03 19:28:41
7436
转载 如何限制一个类对象只在栈(堆)上分配空间
转载出处:http://blog.csdn.net/hxz_qlh/article/details/13135433昨天一个同学去网易面试C++研发,问到了这么一个问题:如何限制一个类对象只在栈(堆)上分配空间?一般情况下,编写一个类,是可以在栈或者堆分配空间。但有些时候,你想编写一个只能在栈或者只能在堆上面分配空间的类。这能不能实现呢?仔细想想,其实也是可以滴。在C++中,类的对象建立分为两种,一
2016-08-27 20:20:08
912
原创 机器学习降维方法概括
最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导。特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap。
2016-08-27 17:09:57
34918
原创 机器学习算法比较
机器学习中常见算法都会用到参数估计以及损失函数,本文列出了常见的5中损失函数:0-1损失函数 、平方损失函数、绝对值损失函数、对数损失函数、合页损失函数。并总结了常见机器学习算法的目标函数、参数优化方法、损失函数,以表格的形式显示出来。
2016-08-26 22:35:57
1203
原创 机器学习常见算法总结(二)
机器学习算法非常之多,下面是常见算法思想及优缺点比较。其中KNN、朴素贝叶斯、决策树(ID3、C4.5、CART)这三类算法在总结一中,逻辑回归、Adaboost、SVM、K-Means在总结二中。
2016-08-26 22:21:45
1574
原创 机器学习常见算法总结(一)
机器学习算法非常之多,下面是常见算法思想及优缺点比较。其中KNN、朴素贝叶斯、决策树(ID3、C4.5、CART)、逻辑回归这四类算法在总结一中,Adaboost、SVM、K-Means在总结二中。
2016-08-24 20:54:46
4490
原创 泛型算法与容器
容器中,我们对容器中元素的操作有限,多数情况下,我们可以进行插入、删除、访问首尾元素、确定容器大小以及获得指向容器的iterator。那如果我们想要查找特定元素、替换或删除一个特定值、给元素排序,等等这些操作是容器中未进行定义的。泛型算法(generic algorithm)给我们提供了这些容器没有的操作。 使用泛型算法我们需要添加头文件 #include ,这里有100多个算法哦。另外标准库还在头
2016-08-10 16:39:05
651
原创 容器适配器
除了顺序容器外,标准库还定义了三个顺序适配器:期盼好久的stack、queue和priority_queue。看完这个就觉得,哇,C++大牛们真是便利了后代无数人啊,真有一种:都写好了,拿去随意用的赶脚。废话不多说,继续我的笔记事业,虽然不精,但可以了解一个大概,想知道最底层的实现请看STL源码解析哦!stack 堆栈适配器 ( 可用的容器类型 vector deque li
2016-08-06 23:02:35
393
原创 顺序容器性能比较
本博客内容来源与C++primer以及STL源码解析。1. 顺序容器类型介绍 vector string array 上述三种都将元素保存在连续的内存中,but vector/string:可变大小,可添加和删除元素,在尾部以外的位置添加和删除元素的很慢,随机访问很快(下标),but string专门存放字符。 array:固定大小,快速随机访问
2016-08-06 20:33:08
1203
转载 机器学习开发者须知道的10个技巧
提供发现埋藏数据深层的模式的能力上,机器学习有着潜在的能力使得应用程序更加的强大并且更能响应用户的需求。精心调校好的算法能够从巨大的并且互不相同的数据源中提取价值,同时没有人类思考和分析的限制。对于开发者而言,机器学习为应用业务的关键分析提供了希望,从而实现从改善客户体验到提供产品推荐上升至超个
2016-08-04 16:25:02
787
转载 常用牛人主页链接(计算机视觉、模式识别、机器学习相关方向,陆续更新。。。。)
转载出处:http://www.cnblogs.com/kshenf/archive/2012/02/07/2342034.html常用牛人主页链接(计算机视觉、模式识别、机器学习相关方向,陆续更新。。。。)如果没有链接的,请看原著作者博客。 牛人主页(主页有很多论文代码)Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei
2016-08-04 11:47:52
1030
原创 LIBSVM学习(七)--参数解释
Libsvm 使用步骤:1. 按照libsvm要求的数据格式,将要训练和预测的数据准备好;http://blog.csdn.net/u014772862/article/details/518289812. 使用svm-scale实现数据缩放,可有可没有,需要按照特征的相关性进行操作;3. 考虑svm-train时是否使用核函数以及核函数的选择,建议首先考虑RBF核函数;4. 采用grid.py选择最优参数c
2016-07-10 21:50:43
18709
1
原创 LIBSVM学习(六)代码结构及c-SVC过程
libsvm中主要使用到的类(svm.cpp)在做分类过程中,我们先看文件svm.cpp,该文件中包含了类的继承和组合(实线表示继承关系,虚线表示组合关系)。svm-train训练过程,svm-predict预测过程,c-SVC计算过程
2016-07-05 22:35:40
10555
原创 LIBSVM学习(五)grid.py参数选择
在libsvm 工具包中,作者很友好的将参数优选自动化,再也不需要手动调参了,下面讲解一下大概的使用以及参数选择原则。使用grid.py需要安装python 和gnuplot两个软件,具体安装方法详见: http://blog.csdn.net/u014772862/article/details/51828967 在这篇文章中给出了这两个软件的下载地址。 安装成功之后修改环境变量,将pyth
2016-07-05 11:04:17
11792
5
原创 LIBSVM学习(四)常见错误
该文章是本人使用过程中出现的一些问题,下列的解决方法已验证,但不排除其他原因导致出现同样错误的情况,如有不全面的地方可以讨论。错误一:Traceback (most recent call last): File “grid.py”, line 223, in run if rate is None: raise RuntimeError(“get no rate”) Runti
2016-07-05 09:57:37
2902
1
原创 LIBSVM学习(三)数据格式
LIBSVM数据格式LIBSVM工具箱中集成了libsvm数据格式读取函数,在子目录matlab下,有源代码libsvmread.c和libsvmwrite.c。LIBSVM需要的数据格式如下: 0 1:-0.961538 2:-0.830769 # 标签列 index:value 0 1:-0.941545 2
2016-07-05 09:54:09
11538
1
原创 LIBSVM学习(二)在linux环境下安装LIBSVM
Python: https://www.python.org/downloads/ Gnuplot: https://sourceforge.net/projects/gnuplot/files/gnuplot/ LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/
2016-07-05 09:52:23
6017
3
转载 LIBSVM学习(一)在Matlab环境下安装LIBSVM
Matlab环境下安装LIBSVM一.下载libsvm http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 在libsvm的网站上下载 libsvm-3.12.zip文件,解压后放在任意目录下,最好放在MATLAB工具箱中,比如 C:\Program Files\MATLAB\R2011a
2016-07-01 08:57:47
1665
原创 回溯和递归区别
为了描述问题的某一状态,必须用到该状态的上一状态,而描述上一状态,又必须用到上一状态的上一状态……这种用自已来定义自己的方法,称为递归定义。形式如 f(n) = n*f(n-1), if n=0,f(n)=1.从问题的某一种可能出发, 搜索从这种情况出发所能达到的所有可能, 当这一条路走到" 尽头 "的时候, 再倒回出发点, 从另一个可能出发, 继续搜索. 这种不断" 回溯 "寻找解的方法, 称作" 回溯法 "。
2016-06-30 11:34:02
33468
4
原创 FCM算法研究(二)--近五年改进文献汇总
近年来,FCM 算法越来越受欢迎,被应用到各个领域范围,针对FCM算法的改进也越来越多。本文总结了近两年来的算法改进,如有改进算法不全请自己查找哦,论文太多啦。由于参考文献均为英文论文,这里就不翻译了,毕竟俺不是歪果仁。FCM变形,FCM改进,FCM
2016-06-28 14:23:10
5436
原创 FCM算法研究(一)
FCM算法来源聚类方法是一种研究数据结构的推导工具,可用于无监督模式识别技术、数据挖掘技术等。一般将聚类分为层次聚类和划分聚类。层次聚类算法产生一个嵌套聚类的层次,算法最多包含N步,在第t步,执行的操作就是在前t-1步的聚类基础上生成新聚类。划分聚类是基于目标函数的一种聚类方法。另一方面,可以将聚类分成hard和fuzzy两种聚类类型。这两种聚类方式均是基于隶属度来描述的。隶属度的概念是从模糊集理
2016-06-27 11:25:53
17383
转载 分类器评价指标--ROC曲线及AUC值
ROC和AUC介绍以及如何计算AUCROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。ROC曲线需要提前说明的是,我们这里只讨论二值分类器。对于分类
2016-06-27 09:56:53
5228
转载 wordpress模板各文件函数解析
本文转自http://sitefans.net/wordpress/wordpress-template-functions-parsing.html修改主题时发现好多WordPress主题函数都不了解,因此网上摘抄了一份放在自己博客上,便于以后好找。在WordPress中如何按你的意愿显示页面,关键看你是否了解WordPress主题模板页面。这里所说的
2015-11-16 20:39:12
1235
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人