数据挖掘(DM:Data Mining):是一个跨学科的计算机科学分支, 它是用人工智能、 机器学
习、 统计学和数据库的交叉方法在相对较大型的数据集中发现模式的计算过程。 数据挖掘过程
的总体目标是从一个数据集中提取信息, 并将其转换成可理解的结构, 以进一步使用。 除了原
始分析步骤, 它还涉及到数据库和数据管理方面、 数据预处理(特征工程) 、 模型与推断方面
考量、 兴趣度度量、 复杂度的考虑, 以及发现结构、 可视化及在线更新等后处理。
数据挖掘是一个多学科的问题,总结就是利用数学/统计只是和机器学习的算法,对数据库中的数据潜在的规律和模型进行发掘,以期获得可以知道商业决策的信息。
数据挖掘建模流程:
1. 回归分类
利用一个或多个输入字段来预测一个或多个输出/目标值。 算法包括决策树,回归(线性, 逻辑, 非线性) , 神经网络, SVM和朴素贝叶斯理论等。
2. 关联
查找数据中存在的模式, 其中一个实体与一个或其他多个相关联。 算法包括Apriori和FP-growth。
3. 聚类
将数据划分为具有类似输入字段模式的记录段或者聚类, 常见的算法为Kmeans, 两步聚类和异常检测。