249. Group Shifted Strings

249. Group Shifted Strings

Perform the following shift operations on a string:

  • Right shift: Replace every letter with the successive letter of the English alphabet, where 'z' is replaced by 'a'. For example, "abc" can be right-shifted to "bcd" or "xyz" can be right-shifted to "yza".
  • Left shift: Replace every letter with the preceding letter of the English alphabet, where 'a' is replaced by 'z'. For example, "bcd" can be left-shifted to "abc" or "yza" can be left-shifted to "xyz".

We can keep shifting the string in both directions to form an endless shifting sequence.

  • For example, shift "abc" to form the sequence: ... <-> "abc" <-> "bcd" <-> ... <-> "xyz" <-> "yza" <-> .... <-> "zab" <-> "abc" <-> ...

You are given an array of strings strings, group together all strings[i] that belong to the same shifting sequence. You may return the answer in any order.

 

Example 1:

Input: strings = ["abc","bcd","acef","xyz","az","ba","a","z"]

Output: [["acef"],["a","z"],["abc","bcd","xyz"],["az","ba"]]

Example 2:

Input: strings = ["a"]

Output: [["a"]]

 

Constraints:

  • 1 <= strings.length <= 200
  • 1 <= strings[i].length <= 50
  • strings[i] consists of lowercase English letters.
class Solution:
    def groupStrings(self, strings: List[str]) -> List[List[str]]:
        mydict=defaultdict(list)

        for s in strings:
            if len(s)==1:
                mydict[()].append(s)
            else:
                char_diff=()
                for i in range(len(s)-1):
                    d=26+ord(s[i+1])-ord(s[i])
                    char_diff+=(d%26,)
                mydict[char_diff].append(s)
        return mydict.values()

hash the diff

以下是对 `df.groupby(group_by_column)[shift_column].shift(0)` 代码进行封装和注释的示例: ```python import pandas as pd def group_shift(df, group_by_column, shift_column): """ 对 DataFrame 进行分组操作,并且在分组条件下对指定列进行位移操作 :param df: DataFrame 数据集 :param group_by_column: 分组依据的列名 :param shift_column: 需要进行位移操作的列名 :return: 返回位移操作后的结果 """ # 使用 groupby 方法按照 group_by_column 列进行分组,并选择需要进行位移操作的列 shift_column # 在此基础上,使用 shift 方法进行位移操作,参数 0 表示不进行位移,返回原始数据 shifted = df.groupby(group_by_column)[shift_column].shift(0) # 返回位移操作后的结果 return shifted ``` 其中, - `pd`:Python 中的 Pandas 库,需要先导入 - `group_shift`:自定义的函数名,可以根据需要进行修改 - `df`:函数的第一个参数,表示需要进行分组和位移操作的 DataFrame 数据集 - `group_by_column`:函数的第二个参数,表示分组依据的列名,可以根据需要进行修改 - `shift_column`:函数的第三个参数,表示需要进行位移操作的列名,可以根据需要进行修改 - `shifted`:函数内部定义的变量名,表示进行位移操作后的结果 - `return shifted`:返回结果,即位移操作后的 DataFrame 数据集 该函数可以直接调用,使用以下代码进行示例: ```python # 创建示例数据集 data = {'group': ['A', 'A', 'B', 'B'], 'value': [1, 2, 3, 4]} df = pd.DataFrame(data) # 调用 group_shift 函数进行位移操作 shifted_df = group_shift(df, 'group', 'value') ``` 其中,`shifted_df` 是位移操作后的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值