【大数据&AI人工智能】HBase 高可用、高性能原理讲解:LSM Tree / 数据压缩 Minor Compaction和Major Compaction / Bloom Filter/Cache

本文深入讲解了HBase的高可用和高性能原理,重点介绍了LSM Tree结构、数据压缩、Minor Compaction与Major Compaction。HBase利用LSM Tree优化写入性能,通过Compaction操作释放存储空间和提高读取效率。同时,文章还探讨了Bloom Filter在查询性能提升中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【大数据&AI人工智能】HBase 高可用、高性能原理讲解:LSM Tree / 数据压缩 Minor Compaction和Major Compaction / Bloom Filter/Cache

HBase 简介

HBase是一个开源的分布式非关系型(NoSQL)数据库,专为处理大规模数据存储和实时查询而设计。它参考了Google的BigTable模型,并作为Apache Hadoop项目的一部分,实现语言为Java。HBase运行在Hadoop Distributed File System(HDFS)之上,为Hadoop提供类BigTable的服务。以下是HBase的一些关键特性:

关键特性

  1. 分布式存储:HBase利用Hadoop的分布式文件系统HDFS,将数据分布在多个节点上,提供水平扩展的能力。
  2. 列式存储:与关系型数据库的行式存储不同,HBase的数据模型是面向列的。这允许更高效地压缩和访问同一列族的数据,从而减少磁盘I/O,并提供大规模数据下的查询性能。
评论 73
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值