作者:禅与计算机程序设计艺术
如何使用自动回归模型(Autoregressive Model)和迁移学习(Transfer Learning)等技术来提高 CatBoost 分类器的性能
- 引言
1.1. 背景介绍
随着互联网与大数据技术的快速发展,机器学习领域也取得了长足的发展。在数据分类任务中,特征丰富的数据、高准确率的数据分类结果以及较低的错误率是评价分类器性能的指标。然而,在实际应用中,特征丰富的数据往往难以获取,因此,为了提高分类器的性能,本文将探讨如何使用**自动回归模型(Autoregressive Model)和迁移学习(Transfer Learning)**等技术来提高 CatBoost 分类器的性能。
1.2. 文章目的
本文旨在使用 CatBoost 库实现自动回归模型和迁移学习技术,提高 binary classification 任务的分类准确率。通过实验分析,我们将讨论如何优化现有的分类器,以及如何将这些技术应用于实际场景中。
1.3. 目标受众
本文将主要面向机器学习初学者和有一定经验的开