作者:禅与计算机程序设计艺术
1.简介
MapReduce 是 Google 提出的一个分布式计算框架,主要用于大数据集(Big Data)的并行处理。其核心思想是将大量的数据分割成独立的块,然后在多个节点上并行地对这些块进行处理,最后汇总所有结果形成最终的输出结果。
其主要的特点包括:
1、高容错性:集群中的任何一个节点失效都不会影响到整个系统的运行。
2、可扩展性:通过增加机器,可以提升处理能力,系统可以自动的平衡负载。
3、易于编程:MapReduce 的编程模型易于理解和掌握。
4、良好的性能:MapReduce 可以提供比单机处理更优秀的性能。
此外,它还具备以下优点:
1、简单有效:MapReduce 框架可以有效简化大数据处理流程,并减少开发难度。
2、容错机制:MapReduce 有自己的容错机制,即如果某个节点出现故障或者由于网络原因导致数据丢失,系统仍然能够正常运行。
3、适合海量数据处理:在 Hadoop 上运行 MapReduce 任务,可以轻松处理 TB 级以上规模的数据。
4、易于移植:Hadoop 在开源社区中得到广泛应用,使得该框架可以在各种平台上运行。
因此,MapReduc