1. 背景介绍
1.1 自然语言处理的演变
自然语言处理(Natural Language Processing,NLP)旨在让计算机理解和处理人类语言,是人工智能领域的关键分支。早期的 NLP 系统主要基于规则和统计方法,例如基于规则的语法分析器和基于统计的机器翻译系统。然而,这些方法往往难以处理语言的复杂性和歧义性。
随着深度学习的兴起,神经网络模型开始在 NLP 任务中展现出强大的能力。循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)等模型被广泛应用于文本分类、情感分析、机器翻译等任务。
1.2 大语言模型的崛起
近年来,大语言模型(Large Language Model,LLM)成为了 NLP 领域的热门研究方向。LLM 通常拥有数十亿甚至数千亿的参数,并在海量文本数据上进行训练。这些模型展现出惊人的语言理解和生成能力,在各种 NLP 任务中取得了突破性进展。
1.3 BERT:Encoder 的代表
BERT(Bidirectional Encoder Representations from Transformers)是 Google 于 2018 年发布的预训练语言模型,其核心思想是利用 Transformer 的编码器部分进行双向语言建模。BERT 的出现标志着 NLP 领域进入了一个新的时代,它不仅在各项 NLP 任务中取得了 state-of-the-art 的结果,也为后续