大语言模型原理与工程实践:Encoder 的代表:BERT

本文深入探讨了大语言模型的崛起,重点解析了BERT这一Encoder的代表。通过介绍Transformer架构、预训练与微调,以及自注意力和多头注意力机制,展示了BERT在自然语言处理中的应用和优势。此外,还讨论了BERT在搜索引擎、情感分析、问答系统和机器翻译等领域的实践案例及未来发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 自然语言处理的演变

自然语言处理(Natural Language Processing,NLP)旨在让计算机理解和处理人类语言,是人工智能领域的关键分支。早期的 NLP 系统主要基于规则和统计方法,例如基于规则的语法分析器和基于统计的机器翻译系统。然而,这些方法往往难以处理语言的复杂性和歧义性。

随着深度学习的兴起,神经网络模型开始在 NLP 任务中展现出强大的能力。循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)等模型被广泛应用于文本分类、情感分析、机器翻译等任务。

1.2 大语言模型的崛起

近年来,大语言模型(Large Language Model,LLM)成为了 NLP 领域的热门研究方向。LLM 通常拥有数十亿甚至数千亿的参数,并在海量文本数据上进行训练。这些模型展现出惊人的语言理解和生成能力,在各种 NLP 任务中取得了突破性进展。

1.3 BERT:Encoder 的代表

BERT(Bidirectional Encoder Representations from Transformers)是 Google 于 2018 年发布的预训练语言模型,其核心思想是利用 Transformer 的编码器部分进行双向语言建模。BERT 的出现标志着 NLP 领域进入了一个新的时代,它不仅在各项 NLP 任务中取得了 state-of-the-art 的结果,也为后续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值