Spark MLlib机器学习库原理与代码实例讲解
1.背景介绍
1.1 大数据时代的机器学习需求
在当今大数据时代,海量数据的产生和积累为机器学习的发展提供了前所未有的机遇。传统的机器学习算法和框架在处理大规模数据时往往力不从心,无法满足实时性、高可用性的需求。因此,迫切需要一种能够高效处理海量数据的分布式机器学习平台。
1.2 Spark的崛起
Apache Spark作为新一代大数据处理引擎,凭借其快速、通用、易用等特点迅速成为业界的宠儿。Spark基于内存计算,避免了不必要的I/O操作,处理速度较Hadoop MapReduce有了数量级的提升。同时Spark提供了丰富的API和类库,使得用户能够方便地在其上开发复杂的数据处理应用。
1.3 MLlib的诞生
机器学习是Spark的重要应用场景之一。为了让Spark更好地服务于机器学习,Spark团队开发了MLlib。MLlib是构建于Spark之上的分布式机器学习库,提供了常用的机器学习算法和工具,如分类、回归、聚类、协同过滤等,帮助用户快速构建大规模机器学习应用。
2.核心概念与联系
2.1 DataFrame
DataFrame是Spark SQL的核心数据结构,本质上是一个分布式的Row对象集合。它与关系型数据库中的二维表格类似,具有schema(即列名和类型)。D