ShuffleNet原理与代码实例讲解

1. 背景介绍

在计算机视觉领域,卷积神经网络(Convolutional Neural Network,CNN)是一种非常重要的技术。然而,CNN的计算量非常大,因此需要使用一些技术来减少计算量。ShuffleNet就是一种用于减少计算量的技术。

ShuffleNet是由微软亚洲研究院提出的一种轻量级卷积神经网络。它采用了一种新的结构,可以在保持准确率的同时,大幅度减少计算量和模型大小。ShuffleNet已经在多个领域得到了广泛的应用,例如图像分类、目标检测和语义分割等。

2. 核心概念与联系

ShuffleNet的核心概念是通道重排(channel shuffle)。通道重排是指将输入的特征图按通道分组,然后将每组通道中的像素打乱,最后再将所有通道合并。这种操作可以增加特征图的多样性,从而提高模型的准确率。

ShuffleNet的另一个核心概念是分组卷积(group convolution)。分组卷积是指将输入的特征图按通道分组,然后对每组通道进行卷积操作,最后将所有组的输出合并。这种操作可以减少计算量和模型大小。

ShuffleNet的结构如下图所示:

graph TD;
    input[输入特征图] --> conv1[1x1卷积]
    conv1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值