1. 背景介绍
在计算机视觉领域,卷积神经网络(Convolutional Neural Network,CNN)是一种非常重要的技术。然而,CNN的计算量非常大,因此需要使用一些技术来减少计算量。ShuffleNet就是一种用于减少计算量的技术。
ShuffleNet是由微软亚洲研究院提出的一种轻量级卷积神经网络。它采用了一种新的结构,可以在保持准确率的同时,大幅度减少计算量和模型大小。ShuffleNet已经在多个领域得到了广泛的应用,例如图像分类、目标检测和语义分割等。
2. 核心概念与联系
ShuffleNet的核心概念是通道重排(channel shuffle)。通道重排是指将输入的特征图按通道分组,然后将每组通道中的像素打乱,最后再将所有通道合并。这种操作可以增加特征图的多样性,从而提高模型的准确率。
ShuffleNet的另一个核心概念是分组卷积(group convolution)。分组卷积是指将输入的特征图按通道分组,然后对每组通道进行卷积操作,最后将所有组的输出合并。这种操作可以减少计算量和模型大小。
ShuffleNet的结构如下图所示:
graph TD;
input[输入特征图] --> conv1[1x1卷积]
conv1