Model Context Protocol (MCP) 简介
文章目录
- Model Context Protocol (MCP) 简介
- Introduction
- For Server Developers
- For Client Developers
- Example Servers
- Example Clients
-
- Feature support matrix
- Client details
-
- 5ire
- AgentAI
- AgenticFlow
- Amazon Q CLI
- Apify MCP Tester
- BeeAI Framework
- BoltAI
- Claude Code
- Claude Desktop App
- Cline
- Continue
- Copilot-MCP
- Cursor
- Daydreams
- Emacs Mcp
- fast-agent
- FLUJO
- Genkit
- Glama
- GenAIScript
- Goose
- gptme
- HyperAgent
- Klavis AI Slack/Discord/Web
- LibreChat
- Lutra
- mcp-agent
- mcp-use
- MCPHub
- MCPOmni-Connect
- Microsoft Copilot Studio
- MindPal
- Msty Studio
- OpenSumi
- oterm
- Roo Code
- Postman
- Slack MCP Client
- Sourcegraph Cody
- SpinAI
- Superinterface
- TheiaAI/TheiaIDE
- Tome
- TypingMind App
- VS Code GitHub Copilot
- Windsurf Editor
- Witsy
- Zed
- Adding MCP support to your application
- Updates and corrections
Why MCP?
MCP helps you build agents and complex workflows on top of LLMs. LLMs frequently need to integrate with data and tools, and MCP provides:
- A growing list of pre-built integrations that your LLM can directly plug into
- The flexibility to switch between LLM providers and vendors
- Best practices for securing your data within your infrastructure
General architecture
At its core, MCP follows a client-server architecture where a host application can connect to