aFakeProgramer
Adaptive AUTOSAR的技术专家,2024 AUTOSAR中国官方TOP培训讲师,具备深厚的汽车行业知识和以太网通信技能。SOME/IP、IPC、DDS、DoIP、UDS、TSN和SOA架构,MQTT,加密,操作系统,v2x,以及c++和Python编程语言。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Deepseek使用技巧
R1是一个推理模型,其输出内容以token为单位,而非特定字数,这使得要求其生成固定字数的内容较为困难。一次问答中,R1只能存储约3万到4万个中文字符。RAG(检索增强生成)技术则通过结合检索和生成模型,提升模型在问答任务中的表现,能够更有效地处理大量信息并生成更准确的回答。原创 2025-05-09 15:51:27 · 130 阅读 · 0 评论 -
在AI大模型领域,现在有哪些典型的指令模型?有哪些典型的推理模型,他们分别有哪些特点?
2025年,AI大模型在指令模型与推理模型领域展现出显著的分化与融合趋势。指令模型如OpenAI GPT-4.5、阿里云通义千问2.5和百度文心一言4.0,专注于精准执行用户指令,适用于合同审核、营销文案生成和医疗报告结构化等场景。推理模型如Anthropic Claude3.7 Sonnet、DeepSeek R1和Google Gemini2.0,则强调逻辑推导和复杂问题分解,适用于数学、编程和工业质检等领域。未来趋势包括指令与推理模型的融合、硬件协同优化以及开源生态的竞争,推动AI技术在更多场景中的应原创 2025-05-09 14:38:51 · 155 阅读 · 0 评论 -
线性回归模型
是一种常见的机器学习模型,用于预测一个连续的目标变量(也称为响应变量)与一个或多个自变量之间的线性关系。在该模型中,自变量和目标变量之间的关系可以表示为一条直线的函数。该模型的目标是找到最佳的直线,使得预测结果与实际结果之间的误差最小。线性回归模型通常使用进行训练,即通过最小化预测值与真实值之间的平方误差来确定最佳拟合直线的参数。该模型的优点是简单易用,易于解释和理解。它在许多实际应用中都表现良好,如房价预测、等。然而,线性回归模型也有一些限制,例如它只能处理线性关系,对于非线性关系的效果不佳。原创 2025-01-17 10:16:44 · 100 阅读 · 0 评论 -
机器学习——10分钟搞明白梯度下降法
梯度下降是一种强大的优化算法,通过迭代更新参数来最小化目标函数。它是机器学习和深度学习的核心工具之一,理解其原理和变种对于构建和训练模型至关重要。原创 2025-01-16 18:03:18 · 649 阅读 · 0 评论 -
机器学习——什么是代价函数? 下
那有没有一种方法让拟合直线是否理想这件事变得可以量化呢?针对那一堆训练集里面对应的是已知的,如果把训练集中的每个代入我们用于拟合的那个直线的公式中都可以得到一个估计值,这个估计值和实际值之差的平方,可以衡量我们估计值和实际值的偏差情况。我们如果把所有m个偏差的平方给它们求和,就会得到一个数,这个数呢,可以衡量我们的拟合曲线对所有的已知训练点的偏差情况。如果有办法把这个和降到最低呢,我们也就找到了那条最中庸,也是最适合用来做这个房子买卖这件事的预测直线。对上面的方差函数变一下形,原创 2025-01-16 15:54:52 · 520 阅读 · 0 评论 -
学习AI大模型的小白入门建议和具体的学习方法推荐
我是一名在汽车行业工作的嵌入式系统工程师,现在我想进入人工智能领域,特别是大型语言模型。说到人工智能,我是一个完全的新手,所以我需要弄清楚从哪里开始。通过遵循这个计划,你将逐步建立必要的技能和知识,以使用人工智能和大型语言模型,即使有嵌入式系统的背景。接下来,我需要学习神经网络,因为它们是深度学习和大型模型的基础。最后,我需要为我的学习之旅设定现实的目标和里程碑。实践经验将是必不可少的。总的来说,这是一段重要的学习之旅,但通过结构化的方法和持续的努力,我可以在人工智能和大型语言模型方面打下坚实的基础。原创 2025-01-15 15:04:29 · 903 阅读 · 0 评论 -
机器学习——什么是代价函数?
在一元线性回归中,模型是一个直线方程,形式为 hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x,其中 θ0θ0 和 θ1θ1 是模型参数,分别代表截距和斜率。他说通过平移坐标系,让θ0=0,那可能是在说如果我们选择一个新的变量x' = x - x_bar,其中x_bar是x的均值,那么新的模型可能没有截距项。这是在说,不同的参数θ对应不同的直线,而每个θ对应的成本函数值是一个点。总之,这段话主要想表达的是,通过定义一个代价函数,把寻找最佳模型参数的问题转化为一个优化问题,即最小化代价函数。原创 2025-01-16 13:36:43 · 460 阅读 · 0 评论 -
机器学习:监督学习与非监督学习
监督学习:使用带标签的数据,目标是预测。无监督学习:使用无标签的数据,目标是发现结构。选择哪种方法取决于数据的标签情况和任务需求。原创 2025-01-15 17:52:24 · 399 阅读 · 0 评论 -
机器学习是什么?
机器学习是什么?原创 2025-01-15 17:00:56 · 767 阅读 · 0 评论 -
简单聊一聊什么是量化?
量化是将大模型中的高精度浮点数(如 fp16、bf16、fp32)转换为低精度整数(如 int4、int8)表示的过程。这种转换可以显著降低模型的内存占用和计算资源需求,从而提高运行效率。量化是一个重要的技术,通过降低模型的表示精度来节省资源和提高效率。关键词包括量化位数、量化误差、量化缩放因子、量化精度、量化训练、量化感知训练等。在实际应用中,需要根据具体情况选择合适的量化方法,并进行 careful tuning 以保持模型性能。原创 2025-01-15 15:12:58 · 1037 阅读 · 0 评论 -
大模型开发与应用实战
能用prompt解决就不用RAG, 能用RAG解决就不用微调。原创 2025-01-10 15:55:25 · 168 阅读 · 0 评论 -
【AI大模型入门书籍】小白入门大模型死磕这三本书籍就对了!!
链接:https://pan.quark.cn/s/73fbb2b38ab7。我用夸克网盘分享了「大模型入门资料」,点击链接即可保存。原创 2025-01-08 15:20:54 · 248 阅读 · 0 评论 -
机器学习,生成式AI ,LLM大模型,人工智能,他们之间的关系是什么?有什么不同?
这些模型(如GPT-4)在大量文本数据上进行训练,可以生成自然语言文本,完成文本补全、翻译、问答等任务。典型的生成式AI模型包括生成对抗网络(GANs)、变分自动编码器(VAEs)和自回归模型(如GPT)。是一个广义的概念,指的是计算机系统能够执行通常需要人类智能才能完成的任务,如感知、学习、推理、决策和自然语言处理。是人工智能的一个子集,涉及计算机系统使用数据和算法进行自我学习和改进。是人工智能的一个子集,专注于利用数据和算法进行自我改进。是生成式AI的一个具体应用,专注于自然语言的生成和处理。原创 2024-11-06 16:24:54 · 962 阅读 · 0 评论 -
人工智能该如何学习
看了一个小视屏,做的一个笔记。人工智能专业选择兴趣驱动,不要盲目跟风!1、需要数学基础微积分、线性代数、概率论和数理统计2、一门合适的语言,推荐python3、学习算法的几个层次看懂和理解原理 看懂代码 自己写经典算法 自己改算法认定目标 每天把小目标定下来,去细分,真的想做一件事的时候,一定要制定计划,并且坚持完成分解100个小目...原创 2020-03-14 15:50:14 · 316 阅读 · 0 评论